
Localized Hybrid Simulation of Martian Crustal Magnetic
Cusp Regions: Vertical Electric Potential Drop and Plasma
Dynamics
Yaxue Dong1 , David A. Brain1 , Riku Jarvinen2 , and Andrew R. Poppe3

1Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA, 2Finnish Meteorological
Institute, Helsinki, Finland, 3Space Sciences Lab, University of California, Berkeley, CA, USA

Abstract The localized crustal magnetic fields of Mars play an important role in the planet’s ionosphere‐
solar wind interaction. Various physical processes in the induced magnetosphere, such as particle precipitation,
field‐aligned currents, and ion outflow, are usually associated with the crustal magnetic cusp regions, where
field lines are mostly vertical and open to space. Due to the small spatial scale (a few hundred km) of theMartian
crustal magnetic cusps, localized models with high spatial resolutions and ion kinetics are needed to understand
the physical processes. We adapt the simulation platform HYB developed at the Finnish Meteorological
Institute to a moderately strong magnetic cusp above the Martian exobase with a 2‐D simulation domain
assuming periodic boundary conditions on the third dimension. Two plasma sources are included in the
simulation: hot protons from the induced magnetosphere and cold heavy ions (O+) from the ionosphere. Our
model results can qualitatively reproduce the vertical electric potential drop, particle transport, and field aligned
current in the cusp region. The vertical electric potential is built up mostly by the Hall electric field as a result of
the separation between ion and electron fluxes of the downward plasma flow. By varying the model inputs, we
found that the vertical potential drop depends on ionospheric ion density and magnetic field strength. These
results tell us that energy is transferred from magnetospheric plasma to ionospheric plasma through the vertical
electric potential buildup in magnetic cusps and how this process may affect electron precipitation, ion escape,
and ionosphere conditions at Mars.

1. Introduction
Mars' global dipole magnetic field shut down long ago at a very early age (e.g., Mittelholz et al., 2020), with only
localized patches of remnant magnetism in the crust also known as crustal fields. The first global map of the
crustal fields of Mars was established based on Mars Global Surveyor (MGS) data (Acuña et al., 1998, 1999),
which showed highly variable spatial distributions near the surface with the field strength up to ∼1,500 nT. These
crustal fields play an important role regarding solar wind‐ionosphere interactions resulting in both local and
global effects on the plasma environment of Mars, such as modifying draped interplanetary magnetic field (IMF)
around the planet (e.g., Brain et al., 2003; Dong et al., 2019; Harada et al., 2018; Kallio et al., 2008), shaping the
ionosphere (e.g., Andrews et al., 2015; Dubinin et al., 2016; Mitchell et al., 2001), diverting ion flows (e.g., Fan
et al., 2020; Li et al., 2022), influencing plasma boundaries (e.g., Brain et al., 2005; Edberg et al., 2008; Fang
et al., 2017), and affecting ion escape (e.g., Brain et al., 2010; Brecht & Ledvina, 2014; Fang et al., 2015; Nilsson
et al., 2011; Ramstad et al., 2016; Weber et al., 2021). It is well known that the polar cusps of the Earth’s
magnetosphere, where shocked solar wind in the magnetosheath can access ionosphere directly usually thought to
be through magnetic reconnections, play an important role in the ionosphere‐magnetosphere coupling (Smith &
Lockwood, 1996 and references therein). These regions are associated with a number of geophysical phenomena,
such as field‐aligned currents, ion outflow, and aurorae (Axford, 1968; Heikkila & Winningham, 1971; Iijima &
Potemra, 1976). At Mars, the regions where the magnetic field lines are mostly vertical and open from the surface
through the ionosphere to space are called crustal magnetic cusps by analogy to Earth. Similarly, various
interesting physical processes take place in Martian crustal magnetic cusps, including aurorae, field‐aligned
currents, electron precipitation, and cold ion outflow (see Brain & Halekas, 2012; Dubinin et al., 2008; Leb-
lanc et al., 2006; Lundin et al., 2006; Xu et al., 2014), which are all related to the electric potential structure in the
magnetic cusp regions.

Ion escape is an important atmospheric loss process of Mars (Jakosky et al., 2018 and references therein).
Numerous previous studies based on the data from the ESA Mars Express (MEX) (Chicarro et al., 2004) and
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NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) (Jakosky et al., 2015) missions have revealed that
low energy ions dominate the total ion escape rates at Mars (e.g., Dong et al., 2023; Nilsson et al., 2011; Ramstad
et al., 2015). Cold ion outflow through crustal magnetic cusps may contribute significantly to these low energy
escaping ions (Inui et al., 2018). Different types of aurorae have been observed at Mars by MEX, MAVEN, and
the Emirates Mars Mission (Bertaux et al., 2005; Chaffin et al., 2022; Deighan et al., 2018; Leblanc et al., 2008;
Ritter et al., 2018; Schneider et al., 2015), among which the discrete aurora is considered to be caused by energetic
electrons precipitating through magnetic cusps (Brain et al., 2006; Gérard et al., 2015; Leblanc et al., 2006;
Schneider et al., 2021). Although both ion and electron accelerations associated with Martian magnetic cusps or
open field lines have been observed byMGS, MEX, andMAVEN (e.g., Dubinin et al., 2009; Halekas et al., 2008;
Xu et al., 2020), the mechanisms leading to such accelerations are not clear yet. Studying the electric potential
buildup and plasma dynamics in the crustal magnetic cusp region is important for better understanding Martian
atmospheric loss and aurorae.

There have been some simulation works regarding the role of crustal fields in the plasma environment of Mars.
The global effects of crustal fields on the Martian induced magnetosphere and ion escape have been discussed
based on magnetohydrodynamic (MHD) and hybrid models (e.g., Brecht & Ledvina, 2014; Fang et al., 2015,
2017; Kallio et al., 2008; Ma et al., 2002; Ma et al., 2014). Furthermore, Ma et al. (2018) applied Hall‐MHD
embedded with particle‐in‐cell (PIC) simulations to study the reconnection between crustal field and nightside
draped field and the effects on magnetotail dynamics. Riousset et al. (2013, 2014) simulated the electric currents,
fields, and plasma dynamics in the dynamo region near crustal fields using a multi‐fluid model. In Li
et al. (2022)’s mutlifluid MHD model, it is shown that the ionospheric heavy ion flow is deflected by crustal
fields. However, there are very few localized simulation models with kinetic effects focusing on the magnetic
cusp regions. Poppe et al. (2021) developed a 1.5 dimensional (one spatial dimension the along magnetic field line
and two velocity dimensions parallel and perpendicular to the magnetic field) PIC model, which showed the field‐
aligned electric potential drop can be up to tens of volts. In this paper, we will present our 2‐D hybrid simulation
model of Martian crustal magnetic cusp regions, compare our results with other localized simulation models, and
discuss how these results are related to Martian ionosphere conditions, ion loss, and aurorae.

2. Model Description and Setup
The HYB hybrid code has been successfully applied to both global and localized simulations of planetary plasma
environments (e.g., Jarvinen et al., 2014; Jarvinen et al., 2010; Kallio et al., 2008; Kallio et al., 2010). As shown
by the following equations, the hybrid simulation model tracks ions as individual particles moving under elec-
tromagnetic fields (Equation 1), treats electrons as a massless neutralizing fluid (Equations 2 and 3), and cal-
culates electric current density and electromagnetic fields based on Ampere’s law, generalized Ohm’s law, and
Faraday’s law (Equations 4–6).

midvi/dt = e(E + vi × B) (1)

ne = ni (2)

Ue = Ui − J/(nee) (3)

J = ∇ × B/μ0 (4)

E = − Ui × B + J × B/(nee) − ∇Pe/(nee) (5)

∂B/∂t = − ∇ × E (6)

In the equations above, mi and vi are the mass and velocity of an individual ion; J is the electric current density; E
and B are the electric and magnetic fields; ni and Ui are the ion density and bulk velocity; ne, Ue, and Pe are the
electron density, flow velocity, and pressure; e is the positive elementary charge; and μ0 is the magnetic vacuum
permeability. The ion density and bulk velocity are obtained from the spatial and velocity distributions of in-
dividual ions in each cube shaped and constant‐sized grid cell. The three terms in Equation 5 are convection
electric field, Hall electric field, and ambipolar electric field, respectively. Since these model runs use an
assumption of isothermal electron fluid, the third term (the electron pressure term) is only a rough estimate of the
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ambipolar electric field with a manually set constant ionosphere electron
temperature Te = 2,000 K based on MAVEN measurements of the electron
temperature at the altitudes of ~200–400 km (Ergun et al., 2021) (Pe= nekTe).
Other terms in the full generalized Ohm’s law, such as electron inertia, are not
included in these model runs. The resistivity term (ηaJ) is only included in the
evolution of magnetic field calculated with Equation 6 to add explicit mag-
netic diffusion (e.g., Jarvinen et al., 2018). The manually selected value for
anomalous resistivity (ηa ≈ 6,000 Ωm) allows magnetic field to diffuse on
time scales much longer than the simulation time step.

We apply this model to a portion of a moderately strong magnetic cusp above
the exobase (lower boundary), mimicked by a magnetic dipole under the
lower boundary aligned with the vertical axis (x axis) with a maximum field
strength of 100 nT at the lower boundary (x = 0). Since the magnetic
configuration is symmetric with the vertical axis, we use a 2‐D simulation
domain with periodic boundary conditions in the third dimension for effi-
ciency. Theoretically, this 2‐D simulation domain is equivalent to a 3‐D
domain with infinite distance in the third dimension instead of a cylindri-
cally symmetric configuration. We will further discuss the effect of this
setting in Section 4. The simulation domain is set to be 600 400 km in the

vertical (x) and horizontal (y) directions respectively. In order to avoid any artificial boundary effects, we only
analyze the model results within a smaller box of 400 200 km. Two plasma source populations are included: a hot,
fast, and tenuous magnetospheric plasma flow represented by protons injected from the upper boundary and a
cold, slow, and dense ionospheric plasma flow represented by oxygen ions injected from the lower boundary. All
the model setting parameters are shown in Table 1. The time step Δt and spatial resolution Δx in Table 1 generally
meets the Courant–Friedrichs–Lewy condition considering the whistler wave mode in such hybrid simulation:
Δt ≤ Δx2μ0nee/(2πB) (see Alho, 2016 for details) with the electron density ne ~ a few cm

−3 and magnetic field

B ~ tens of nT (see Figures 2 and 3). The inertial lengths (di =
̅̅̅̅̅
mi

√
/(μ0nie2) ) for H

+ and O+ are ∼200 and

∼500 km respectively with the ion density (ni) of the two ion species to be∼1–2 and∼2–5 cm
− 3 respectively (see

Figure 3). The inertial lengths for both ion species are comparable to the spatial scale of the simulation domain,
which tells us that the ion kinetic effects are significant in such magnetic cusp regions (Tóth et al., 2017). The
gyroperiods (T = 2πmi /(eB)) for H

+ and O+ are ≥0.65 and ≥10 s respectively with B ≤ 100 nT. The time step in
Table 1 is much smaller than both H+ and O+ gyroperiods, which is valid for the study of ion kinetics. Since the
ions are tracked as individual particles in this model, the ion gyroradius is not directly related to the choice of the
spatial resolution. We will discuss the effects of ion gyroradii on the model results in Section 3. Gravity is not
included in the model runs, the effects of which will be discussed in Sections 3 and 5.

3. Model Results
We run the model until it converges to a steady state. As shown in Figure 1, the injection and escape rates stay
approximately equal to each other for both ion species after∼50 s of simulation time. Since gravity is not included
in the model run, almost all injected planetary O+ ions from the lower boundary are expected to leave the
simulation domain through the upper boundary with an escape rate matching the injection rate when the model
converges. The purpose of this work is not to model ion escape rates, but to model the ion dynamics and electric
potential structures in the crustal magnetic cusp regions. The spike in the vertical electric potential drops at ∼85 s
as shown in Figure 1b is likely to be a statistical noise, which was eventually stabilized as the model continued
running and should not affect any model results after. After∼100 s, the vertical electric potential drops at different
locations along the upper boundary also become steady with fluctuations, which includes combined effects of
statistical particle noise and wave activities. In this work, we only focus on direct current (DC) electromagnetic
fields. It would be more appropriate to leave the analysis of wave activities to future work with a 3‐D simulation
domain. Therefore, we averaged the electromagnetic fields over the last 20 s of the total simulation time (180–
200 s in Figure 1). The results of electromagnetic field distributions are shown in Figure 2.

Figure 2a shows the original magnetic field (B0) of a crustal magnetic cusp, which stays constant through the
simulation. The induced magnetic field (B1) as shown in Figure 2b is mostly pointing downward. The induced

Table 1
Model Setting

Box sizea (x × y) [0, 200] × [− 200, 200] (km)

Spatial resolution 5 km

Time step 0.1 ms

Magnetic field strength 100 nT

Magnetospheric plasma H+

H+ density 1 cm− 3

H+ flow velocity 100 km/s

H+ temperature 25 eV

Ionospheric plasma O+

O+ density 10 cm− 3

O+ flow velocity 1 km/s

O+ temperature 1 eV
aThis is smaller than the simulation domain to avoid artificial boundary
effects. See Section 2.
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magnetic field strength is much smaller than the crustal field. Thus it does not modify the original magnetic field
significantly, as shown in Figure 2c. The convection (− Ui × B) and Hall (J × B/(nee)) terms of electric field in
Equation 5 are shown in panels (d) and (e). These two terms of electric field are mostly in the opposite directions.
The third term, ambipolar electric field (− ∇Pe /(nee)) is not shown here because it is much smaller than the other
two terms and the distribution does not show a clear pattern except that there are more cells with upward than
downward ambipolar electric field presenting in the simulation domain. As shown in Figure 2f, the total electric
field follows the pattern of the Hall term and is mostly pointing upward. The strength of the total electric field is
10− 5–10− 2 V/m in the simulation domain, which gives the O+ ions a much larger acceleration than the gravity
near Mars' surface. Therefore, the effect of the lack of gravity in the model run is expected to be insignificant.

In Figure 3 we present the results of particle distributions and dynamics. Panels (a) and (b) show that the
magnetospheric H+ ions injected from the upper boundary with a downward initial flow velocity of 100 km/s are
significantly decelerated by the upward total electric field (see Figure 2f) and become denser in the central cusp
region. The estimated gyroradius (rg = miv/(eB)) for the H

+ ions is a few tens of km in most of the simulation
region with the velocity v ∼ 50–100 km/s and magnetic field B ∼ 1–100 nT as shown in Figures 2c and 3b, which
means the Lorentz force from the magnetic field (ev × B) would significantly deflect the H+ ions in the direction
perpendicular to the x − y plane. From Figure 3c it can be seen that the downward moving H+ ions are deflected
by the magnetic field into the x − y plane (+z direction) on the − y side and out of the x − y plane (− z direction) on
the +y side, which would form a clockwise loop of H+ ion flow in the horizontal plane in a 3‐D domain with a

Figure 1. (a) Injection and escape rates for the two ion populations as a function of time from the model. (b) The vertical
potential drop at different locations along the upper boundary. Dashed and solid lines correspond to negative and positive y
coordinates, respectively.
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cylindrically symmetric cusp field configuration. As shown in Figures 3d and 3e, the ionospheric O+ ions injected
from the lower boundary with an initial upward flow velocity of 1 km/s are accelerated to 10–20 km/s by the
upward electric field, which leads to a significant density drop of O+ in the central cusp region. The gyroradius for
O+ ions is estimated to be from a few tens of km to over 100 km in most of the simulation domain with the velocity
v∼ 5–10 km/s and magnetic field B ∼ 1–100 nT as shown in Figures 2c and 3e. Thus the upward moving O+ ions
are deflected by the magnetic field in opposite directions to the H+ ions in the horizontal directions as shown in
Figure 3f, which would form a counterclockwise ion flow loop in the horizontal plane. From Figure 1a, it can be
seen that the magnetospheric H+ injection rate is 10 times higher than the ionospheric O+ injection rate.
Consequently, the H+ number flux dominates over the O+ number flux in the simulation domain. Thus there is a
net downward ion flow in the vertical plane and a net clockwise ion flow in the horizontal plane.

Figure 3h exhibits the acceleration of electron flow downward along the magnetic field lines as determined by
Equation 3. As shown in Figure 3i, the horizontal electron flow is pointing into the x − y plane (+z direction) on
the − y side and out of the x − y plane (− z direction) on the+y side (i.e., a counterclockwise loop in the horizontal
plane), which is consistent with the E × B drift motion of electrons and a natural result considering the first two
terms in Equation 5 can be written as (− Ue × B). As shown in Figure 3j, the current directions are aligned with
magnetic field lines in the central cusp region, which means the model at least qualitatively reproduced the field
aligned currents. These upward field aligned currents will return to the lower boundary according to Figure 3j. By
comparing the ion and electron fluxes from the model results, it can be told that these field‐aligned currents are
carried mostly by electrons and the returning currents are carried by the net downward ion flow.

Since the vertical electric field and potential drops are directly responsible for the acceleration of both precip-
itating and escaping particles, in Figure 4 we show the analysis of these two physical values from the model
results. Figure 4a shows the spatial distribution of vertical electric field Ex, which is upward (positive) every-
where. Since the two major terms (convection and Hall terms) of electric field in Equation 5 are both perpen-
dicular to the magnetic field, Ex is large in the region where there is a strong horizontal component of the
magnetic field and very small near the vertical (x) axis where the magnetic field line is mostly vertical. Figure 4b
shows the vertical potential drop distribution, which is calculated by integrating Ex from the lower boundary
along the vertically upward (+x) direction (not along magnetic field lines). The region with large vertical po-
tential drops in Figure 4b is consistent with the region where ionospheric O+ ions are significantly accelerated in
Figure 3e. From Figure 4c, it can be seen that the potential drop at the upper boundary is up to ∼40 V (maximum
found at y ∼± 30–40 km) and the averaged potential drop over the horizontal direction is ∼12 V, both are
significant potential drops for accelerating heavy ions at Mars considering the escape energy of O+ is ∼2 eV near
Mars' surface. The contributions from different terms in Equation 5 to the average Ex are shown in Figure 4d. The

Figure 2. (a–c) Magnetic field distributions. (d–e) Electric field distributions superimposed on magnetic field lines.
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Hall term (J × B/(nee)) is the major contribution to the vertical potential drop. The convection term (− Ui × B) is
pointing downward, opposite to and smaller than the Hall term (see also Figures 2d and 2e). Although the
ambipolar electric field is much smaller than the other two terms, it has a positive contribution to the vertical
potential drop and is likely responsible for the acceleration of electrons along the magnetic field lines (see
Figure 3h), since the other two terms are both perpendicular to the magnetic field. As mentioned in Section 2, the
ambipolar electric field in the model run can only be considered as a rough estimate, which will be further
discussed in Section 5.

4. Mechanism of the Vertical Potential Drop Buildup
From all the model results presented above, we can now understand how the system is built up. Figure 5 shows
a simplified structure of the plasma flows, currents, and electromagnetic fields in the system. As mentioned in
Section 3, the net downward ion flow is deflected clockwise in the horizontal plane by the magnetic field
(Figure 5). As shown in Figure 2d, the clockwise horizontal ion flow and the horizontal magnetic field
component result in a downward convection electric field. The electron flow moves in the opposite direction
from the net ion flow in the horizontal plane as a result of E × B drift, which forms a clockwise current loop
(Figure 5). This current loop induces a downward magnetic field (B1) as shown in Figure 2b. The clockwise
current loop and the horizontal magnetic field component generate an upward Hall electric field, which

Figure 3. (a–i) Ion and electron density and velocity distributions. (j) and (k) Current density distributions.
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dominates over the downward convection electric field to produce a total upward electric field as shown in
Figures 2d–2f, similar to the hybrid model results for lunar magnetic anomalies by Jarvinen et al. (2014). The
horizontal current loop as a result of separation between electron and ion flows is the key for the buildup of the
system and vertical potential drop.

Figure 4. (a) and (b) Distributions of vertical electric field and potential drop (not along magnetic field lines). (c) Maximum and average potential drop over the
horizontal direction as a function of the vertical distance from the lower boundary. (d) The different terms of the average vertical electric field as a function of the vertical
distance from the lower boundary.

Figure 5. Simplified structures of ion and electron flows, currents, and electromagnetic fields in the system. Note that the cartoons do not show spatial distributions
properly.
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As mentioned in Section 2, the 2‐D simulation domain is actually equivalent to a 3‐D domain with infinite
distance in the third dimension instead of a cylindrically symmetric configuration as in Figure 5. With an infinite
distance in the third dimension, the horizontal currents would form in opposite directions along the third
dimension (±z) on each side of the magnetic cusp as shown in Figure 3k, which would build up a qualitatively
identical system in the vertical plane as that in Figure 5a. Therefore, we consider the 2‐D simulation domain to be
a valid simplification for the 3‐D cusp magnetic field configuration for studying the vertical electric potential
structure and particle dynamics. Although the real Martian crustal magnetic cusps are more irregular shaped in the
horizontal plane than that in Figure 5 (Connerney et al., 2005), a non‐circular current loop may still form around
the cusp to allow such a system to build up. We have also done a test run with the same model settings as in
Table 1 except for reversed crustal field directions. Results from the test run (not shown here) exhibit reversed
horizontal current and induced magnetic field, but the same electric field distribution and potential drop in the
vertical plane, which tells us that polarity of the magnetic cusp does not affect the potential drop buildup.

More model runs have been done with different ionospheric O+ densities (1 and 100 cm− 3) and different crustal
magnetic field strengths (50 and 100 nT). All the model results still show similar particle, current, and electro-
magnetic field distributions as those in Figures 2 and 3, which means the basic structure of the system as shown in
Figure 5 does not vary with the changing parameters in this range. In Figure 6, we compare the maximum and
average vertical potential drops at the upper boundary with ionospheric O+ densities (ni) and crustal magnetic
field strengths (B0). The trends are very clear: the vertical potential drop decreases with ni but increases with B0.
As shown in Figures 3b and 3e, the upward electric field accelerates ionospheric O+ and decelerates magneto-
spheric H+. The buildup of the vertical potential drop represents the energy transfer between the two plasma
populations. The injected magnetospheric plasma flow serves as an energy input to the system and an initial driver
for vertical electric potential drop buildup. Through the upward electric field, energy is transferred from the
decelerated magnetospheric H+ to the accelerated ionospheric O+. When the energy input to the system is the
same but the ionospheric O+ density is increased, the same energy has to be shared among more ionospheric ions
and each ion gets less acceleration, which explains why the potential drop decreases with ni. The increase of the
potential drop with crustal magnetic field strengths is also easily understandable. Since the convection and Hall
terms Equation 5 can also be written together as − Ue ×B, stronger magnetic field would result in stronger upward
electric field assuming Ue does not change significantly. In other words, without any physical collisions between
particles in the model, the magnetic cusp serves as a channel for the energy transfer between the two plasma
populations, the efficiency of which increases with magnetic field strength.

5. Discussion
In this model, the convection and Hall electric fields, both perpendicular to the magnetic field, are much stronger
than the ambipolar electric field, the only term in Equation 5 that can have a component parallel to the magnetic
field and contributes to the field aligned potential drop. Poppe et al. (2021) simulated the field aligned potential
drop in Martian crustal magnetic cusps using a fully kinetic PIC model. With a similar set of ionospheric and
magnetospheric plasma and magnetic field parameters to those in this work, the potential drop from their PIC
model falls in the range of tens of Volts, also similar to our results as shown in Figure 6. Besides, the trend that the

Figure 6. The average and maximum potential drop at the upper boundary as functions of different ionospheric ion densities
and crustal field strengths.
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potential drop increases with crustal magnetic field strength is also consistent between the two models. PIC model
solves the field aligned electric field self‐consistently with both ion and electron dynamics. Thus the ambipolar
electric field and the terms not included in Equation 5, such as the electron inertia term, are better represented in
the PIC model. On the other hand, the two major electric field terms in our model: convection and Hall electric
fields, which are both perpendicular to the magnetic field and related to horizontal ion and electron flows, are not
well represented in the PIC model with only one spatial dimension along the magnetic field. Therefore, although
Poppe et al. (2021)'s PIC model and our hybrid model result in similar potential drops in the magnetic cusp, the
two models are actually complementary to each with different electric fields: parallel and perpendicular to the
magnetic field respectively, which tells us that both field‐aligned and perpendicular (to magnetic field) electric
fields may be significant in the cusp region. Thus the crustal magnetic cusps may play an important role not only
in the field aligned acceleration of electron precipitation (e.g., Xu et al., 2020) and ion outflow (e.g., Dubinin
et al., 2009; Lundin et al., 2006), but also in the acceleration of unmagnetized ionospheric ions to move across
magnetic field lines (Weber et al., 2021).

The ambipolar electric field is the only electric field in this model that can accelerate electrons along magnetic
field lines. Figure 3b shows some field‐aligned acceleration of electrons in the central cusp region by the
ambipolar electric field. However, according Figure 4d it is too small to explain the observed acceleration of
precipitating electrons that cause discrete aurorae (Brain & Halekas, 2012; Dubinin et al., 2009; Halekas
et al., 2008; Xu et al., 2020). Although the ambipolar electric field strength as shown in Figure 4d is generally
consistent with the average ambipolar electric field in the ionosphere based on MAVEN data (Akbari et al., 2019;
Collinson et al., 2019; Xu et al., 2018), we have to keep in mind that it is only a rough estimate with a manually set
constant electron temperature and a simplified model setup without gravity (see Section 2). As shown by Poppe
et al. (2021), with electron kinetics and gravitationally bound ionospheric ions in the model it is possible to get a
much stronger field aligned electric field in the magnetic cusp than the average ionosphere ambipolar electric
field. Besides, the energetic precipitating electrons may also be accelerated by the much stronger ambipolar
electric field at higher altitudes (seeMa et al., 2019; Xu et al., 2021) or get energized frommagnetic reconnections
(see Harada et al., 2018; Ma et al., 2018). Although our localized model cannot reproduce a field‐aligned potential
drop large enough to cause discrete aurorae, the mechanism reported here may coincide with patchy proton
aurorae (Chaffin et al., 2022) on Mars, since both may occur when there are incident proton fluxes to the
ionosphere and atmosphere. We will leave the study of the connection with patchy proton aurorae to future work.

The vertical potential drop from the convection and Hall electric fields in this model accelerates ionospheric ions
upward significantly. However, whether it enhances ion escape in the cusp region depends on other factors as
well. In the model, the origin of the magnetospheric plasma is not specified. It can be incident solar wind plasma,
returning planetary plasma, or a combination of both. Besides, the ion species does not have much influence on
the mechanism of the potential drop build up. As shown in Section 2, both H+ and heavy ions in the simulation
domain would have a gyroradius that is large enough for them to be significantly deflected by magnetic field from
the electron flow to form a current loop as shown in Figure 5. From Figure 6a it can be told that the more dominant
the downward magnetospheric plasma flow is over the upward ionospheric plasma flow the larger the potential
drop is, which means a sufficient net downward plasma flow is needed to build up a significant potential drop.
Therefore, there can be three scenarios for whether this potential drop buildup mechanism actually enhances ion
escape: 1) If the downward magnetospheric plasma flow originates from solar wind, this process does enhance
the escape of planetary ions in the magnetic cusp. 2) If the downward magnetospheric plasma flow is composed
of returning planetary ions of the same species as the ionospheric plasma, it does not enhance the ion escape
because there is a net returning planetary ion flow of that species. 3) If the downward magnetospheric plasma
flow is composed of returning planetary ions of a different species from the ionospheric ions, it does enhances the
escape of that certain ionospheric ion species. However, in real situation, both plasma populations may contain
multiple ion species and origins, and thus, these three scenarios may co‐exist, which would require case‐to‐case
analysis to find out whether the ion escape is enhanced.

Our model simulates a steady state of the Martian magnetic cusp region with continuously injected ionospheric
and magnetospheric plasma at constant rates without spatial variations such as incident waves. As discussed in the
paragraph above, neither the origin nor the ion species for the incident magnetospheric plasma has much influence
on the mechanism of the potential drop buildup in this model. The incident “magnetospheric” ions may be
precipitating H+ or O+ (e.g., Dieval et al., 2013; Leblanc et al., 2015) on the dayside of Mars, and may be
returning H+ or heavy ions on the nightside (e.g., Harada et al., 2015). On the dayside, where the ionosphere has a
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constant supply from photoionization (Withers, 2009 and references therein), during ion precipitating events a
steady state of the magnetic cusp region as in our model may exist. Without precipitating ions, the potential drop
would not build up to remove ionospheric ions. Either way, the ionospheric condition in the dayside cusp region
may stay stable under the mechanism in this model. However, on the nightside, the ionospheric density is
generally lower than the dayside and the supply (day‐night plasma transport and ionization by precipitating
particle impacts) is less steady (e.g., Adams et al., 2018; Withers et al., 2012). The dependence of vertical po-
tential drop on ionosphere density as shown in Figure 6a suggests that without a constant and sufficient supply to
the ionosphere, the increase of potential drop with the decrease of ionosphere density would work as a positive
feedback loop, which may result in removing ionospheric ions quickly and breaking the steady state. Thus during
ion precipitating events in a nightside cusp region, the ionosphere may be unstable, which might contribute to the
variability of Mars' nightside ionosphere (Girazian et al., 2017). Dubinin et al. (2008) also suggested a non‐steady
state of the cusp region when the field‐aligned current cannot be closed in the ionosphere. Since the hybrid model
assumes quasi‐neutrality and all currents can go freely out of the simulation domain, it will automatically lead to
closed current systems. Thus the scenario in Dubinin et al. (2008) cannot be reproduced in our model. A non‐
steady state of the crustal magnetic cusp region is plausible in real situation, which will be an interesting topic
for future study.

In this work, we use a 2‐D simulation domain for efficiency and to focus on the vertical electric potential structure.
However, as discussed in Section 4, the horizontal plasma flows are crucial for building up the vertical electric
potential drop. Some previous works based on observations and simulations have also found ion flow being
deflected in the horizontal plane near strong crustal fields (e.g., Fan et al., 2020; Li et al., 2022). For future work, it
would be interesting to do a comparison with the observed ion flows near cusp regions with a 3‐D simulation
domain and more realistic plasma parameter settings. Our model simulates a region within 200 km above the
exobase, which only provides a local mechanism for the potential drop buildup. To fully understand the electric
potential structure and particle dynamics in the cusp region, other electric fields and acceleration processes below
the exobase in the dynamo region (Riousset et al., 2013, 2014) and at higher altitudes (Harada et al., 2018; Kallio
et al., 2008; Ma et al., 2018, 2019; Xu et al., 2021) should also be taken into consideration.

6. Summary
We have applied the quasi‐neutral ion‐kinetic hybrid simulation platform HYB to a 2‐D simulation domain with a
moderately strong magnetic cusp above the exobase and two plasma populations: magnetospheric and iono-
spheric plasma injected from the upper and lower boundaries respectively. The hybrid model can qualitative
reproduce the vertical electric potential drop and field aligned currents in the central cusp region. The potential
drop is mostly from the Hall electric field as a result of the separation between ion and electron flows in the
horizontal plane. The field aligned currents are carried by downward electron flows accelerated by the ambipolar
electric field. The model results with different ionospheric ion densities and crustal field strengths as input show
that the vertical potential drop decreases with ionospheric ion densities and increases with crustal field strengths.

These results tell us: 1) The magnetic cusp serves as a channel for the energy exchange between the two plasma
populations, for which the efficiency is higher with stronger magnetic field. 2) The incident magnetospheric
plasma, which may have planetary or solar wind origination, is the energy input to the system, and a dominant
downward plasma flow is necessary for a significant potential drop to build up. 3) Although the vertical electric
potential drop accelerates ionospheric ions, whether this mechanism in the model enhances ion escape in the cusp
region depends on the origin and ion species of the incident magnetospheric plasma. 4) The nightside ionosphere
in the cusp region during ion precipitating events without a sufficient and continuous supply may be unstable
under this mechanism, since the decrease of ionosphere density and the increase of electric potential drop will
form a positive feedback loop.

Data Availability Statement
Simulations were performed using the HYB code distributed under the open source GPL v3 license by the Finnish
Meteorological Institute (github.com/fmihpc/hyb). The simulation code version used in this study is archived
(https://doi.org/10.5281/zenodo.10517964).
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