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Abstract The Sun is a powerful source of radio emissions, so much so that,

unlike most celestial sources, this emission can dominate the system noise of

radio telescopes. We outline the theory of noise in maps formed by Fourier

synthesis techniques at radio wavelengths, with a focus on self-noise: that is,

noise due to the source itself. As a means of developing intuition we consider

noise for the case of a single dish, a two-element interferometer, and an n-element

array for simple limiting cases. We then turn to the question of the distribution

of noise on a map of an arbitrary source observed at radio wavelengths by an

n-element interferometric array. We consider the implications of self-noise for

observations of the Sun in a companion paper.
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1. Introduction

Fourier synthesis mapping at radio wavelengths using an interferometric array of
antennas is a mature technique for imaging celestial sources with a high degree
of angular resolution over a large field of view. The technique has been exploited
by ground based telescopes spanning more than four orders of magnitude in
wavelength, from decameter/meter wavelengths (e.g., the LOw Frequency ARray
- LOFAR: van Haarlem et al. 2013) to millimeter/submillimeter wavelengths
(e.g., the Atacama Large Millimeter/submillimeter Array - ALMA: Wootten &
Thompson 2009). Most Fourier synthesis arrays are optimized for detecting and
imaging faint celestial sources in their continuum or spectral line emissions. For
the vast majority of sources observed by such arrays, the emission from the source
itself makes no significant contribution to the system noise. However, sources for
which the source itself contributes significant noise do exist — examples include
pulsars (Os lowski et al., 2011), radio galaxies such as Virgo A (Morgan & Ekers,
2021), supernova remnants (McCullough, 1993), and the Sun (Bastian, 1989).
The role of noise contributed by the source cannot necessarily be ignored for
these sources. Depending on the nature of the source and the array used to
observe it, “self-noise” can manifest itself in complex ways across a map.

In this paper we consider the properties of noise in Fourier synthesis images
of strong sources from a theoretical perspective. In a companion paper (Paper
II), we consider these ideas for the specific problem of imaging solar phenomena
at radio wavelengths. In the next section we begin with a brief introduction
to Fourier synthesis mapping. In Section 3 we introduce some terminology and
provide an overview of noise properties in radio observations. To develop in-
tuition, we consider simple sources using single-dish observations, a correlating
two-element interferometer, and a correlating n-element array. In Section 4 we
consider the general case of noise properties of synthesis images both on and off
radio sources using a correlating array with and without total power measure-
ments, and discuss prospects for mitigating the self-noise contribution. We refer
to the former case as a “correlation array” and the latter as a “total power”
array. We conclude in Section 5.

2. Fourier Synthesis Imaging

It is assumed that reader is broadly familiar with interferometry and Fourier
synthesis imaging at radio wavelengths. Nevertheless, we begin by introducing
some key concepts and providing a brief overview of synthesis imaging at radio
wavelengths before discussing noise in radio interferometric measurements and
the resulting maps.

The angular resolution of a single dish at radio wavelengths is θSD ∼ λ/D,
where D is the diameter of the (circular) antenna, λ is the wavelength of the
radiation in question. The only way the angular resolution can be increased at
a given wavelength using a single dish is to increase D, an option that quickly
becomes too costly to be a realistic in most cases. In addition, a single dish is
limited to observing a single pixel on the sky unless mapping techniques are used:
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Noise in Radio Maps of the Sun

e.g., pointing to a discrete grid on the sky, driving the telescope continuously
across the sky in a defined sampling pattern, or the use of a focal plane array.

The utility of interferometric arrays of antennas operating at radio wave-
lengths is their ability to image celestial sources with a high degree of angular
resolution. The limitations to angular resolution imposed by a single dish are
overcome by, in effect, dividing the large single aperture into a number of small
apertures and distributing them in some optimum configuration over an effective
aperture. The angular resolution of the interferometric array θINT is then de-
termined by the maximum separation between antennas dmax: θINT ∼ λ/dmax.
The field of view (FOV) of the array is determined by the angular response
of the constituent antennas (each presumed here to be identical circular aper-
tures of diameter D), referred to as the primary beam. The primary beam is
often well-approximated by a Gaussian with a full width at half maximum
θFOV = θSD ∼ λ/D and we have θINT ≪ θFOV. The disadvantage to using
this technique is that the effective aperture is usually incompletely sampled.

Consider a source with a radio brightness distribution on the sky at a cyclic
frequency ν = c/λ given by I(l,m), where l and m are direction cosines relative
to the phase tracking center of the array, usually the center of the field of view.
The units of I(l,m) are those of specific intensity: W m−2 Hz−1 sr−1. We will also
refer to the spectral flux density, or simply “flux density”, the specific intensity
integrated over solid angle. In radio astronomy, the unit for spectral flux density
is the Jansky, where 1 Jy= 10−26 W m−2 Hz−1. Since solar signals have much
larger flux densities than other celestial sources, solar flux units (SFU) are often
used for solar observations, where 1 SFU ≡ 104 Jy.

The fundamental relationship between I(l,m) and measurements made by an
interferometric array is based on the van Cittert-Zernike theorem (e.g., Born &
Wolf 1980):

V(u, v) =

∫ ∫
A◦(l,m)I(l,m)e−2πi(ul+vm)dldm, (1)

where V(u, v) is referred to as the visibility function, a complex quantity. A◦(l,m)
is the normalized primary beam, and the coordinates u and v represent differ-
ences in position of any two antennas j and k expressed in wavelength units:
u = ν(xj − xk)/c and v = ν(yj − yk)/c. Note that l = sin θx ≈ θx and
m = sin θy ≈ θy for small angular offsets from the phase tracking center which,
for our purposes, we take to be (θx, θy) = (0, 0). In this case, Equation 1 can be
inverted via inverse Fourier transform to yield

A◦(l,m)I(l,m) =

∫ ∫
V(u, v)e2πi(ul+vm)dudv. (2)

The coordinate space in which the measurements of V(u, v) are made is the
(u, v) plane or the aperture plane. We refer the reader to standard texts for the
derivation of these relationships and to understand the various assumptions that
underpin them (e.g., Thompson et al. 1986; Perley et al. 1989 and later editions).

In practice, a given antenna in a Fourier synthesis array collects radiation from
the celestial source and couples it to the antenna electronics through the antenna
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feed. The feed is generally designed to respond to radiation in a specific frequency
range and to separate orthogonal senses of polarization – either two linearly
polarized signals X and Y, or two circularly polarized signals R and L. The signals
from antenna j are then amplified, conditioned1, and corrected for geometrical
delay before being multiplied by those from another antenna k, and averaged
for an integration time τ at some specific frequency ν and bandwidth ∆ν to
produce a complex visibility measurement Vjk(u, v). The device that performs
the cross-multiplications (or cross-correlations) and averaging is the correlator.
We will also discuss total power measurements, Zi, where the signal for each
antenna is multiplied by itself (auto-correlations) and averaged. Note that we
ignore the fact that antenna-based calibration factors (complex gains) must be
derived and applied to the measured cross-correlations and auto-correlations to
convert them to physical units. Calibrated visibilities are typically expressed in
Jansky units.

A Fourier synthesis telescope is a machine for measuring the complex visi-
bility function V(u, v). A radio imaging array comprising n antennas has nb =
n(n − 1)/2 distinct antenna pairs, or antenna baselines. Each antenna baseline
measures a (complex) value of V(u, v), or single spatial Fourier component, of the
radio brightness distribution of a celestial source at a given time, frequency ν,
bandwidth ∆ν, and wave number (we ignore polarization and spectral line obser-
vations here). Since the left hand side of Equation 2 is real V(u, v) is Hermitian,
and so V(−u,−v) = V∗(u, v). In practice, given the finite number of antennas
in an array, the sampling of V(u, v) is discrete and non-uniform; there will be
gaps in the sampling of V(u, v). Fourier inversion of the visibility measurements
therefore yields an imperfect image of the radio brightness distribution of the
source. If we represent the sampling function by s(u, v) the resulting map is

ID(θx, θy) =

∫ ∫
V(u, v)s(u, v)e2πi(uθx+vθy)dudv, (3)

where A◦ has been absorbed into ID, often referred to as the “dirty map”. The
sampling function is the autocorrelation function of the spatial distribution of
antennas. Suppose a point source of unit flux density is observed at the phase
tracking center. Then the real part of the complex visibility VR(u, v) = 1 and
the imaginary part is VI(u, v) = 0 and the resulting dirty map is just

BD(θx, θy) =

∫ ∫
s(u, v)e2πi(uθx+vθy)dudv, (4)

referred to as the point spread function (PSF) or the “dirty beam”. The dirty
map is a convolution of the true radio brightness distribution with the PSF,
or dirty beam BD: ID(θx, θy) = BD(θx, θy) ⋆ I(θx, θy). The PSF is typically
characterized by a narrow central lobe with a width ∼ θINT and sidelobes. The
main lobe is usually well-characterized by an elliptical Gaussian, referred to

1We ignore the many details involved in manipulating the signal before correlation: multiple
stages of amplification, frequency conversion, filtering, digitization, etc.
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as the “clean beam”. Powerful nonlinear deconvolution or image regularization
techniques are used to remove the sidelobes of the dirty beam from the dirty
map to estimate the “true” radio brightness distribution I(θx, θy), given the
incomplete sampling of V(u, v) in the presence of the additive noise. We denote
the estimate of the true radio brightness distribution IC(θx, θy).

The resolution of the clean map is characterized by the clean beam Ωbm ∼
θ2INT. Deconvolved maps made at radio wavelengths are typically expressed in
units of spectral flux density per beam ICΩbm. It is often more convenient and
informative to quantify the map in terms of brightness temperature Tb (Kelvin
units), which is linearly related to ICΩbm through

IC(θx, θy)Ωbm =
2kBTb(θx, θy)

λ2
Ωbm. (5)

Most general purpose interferometers operating at radio wavelengths are de-
signed to maximize sensitivity to faint celestial sources, parameterized as the
signal-to-noise ratio SNR = IC(θx, θy)Ωbm/σI = Tb(θx, θy)/σT , where σI and
σT are the rms values for maps expressed in units of flux density per beam or in
Kelvin. The dynamic range (DR) is the maximum SNR in the map and is often
used as a metric for the faintest signal that can reliably measured in a map in
the presence of the brightest signal.

It is common practice to resample the measured visibilities and the sampling
function onto a uniform grid in order to exploit the Fast Fourier Transform
(FFT) algorithm. In addition, the visibilities and sampling function are often
weighted to optimize aspects of the map — e.g., to achieve diffraction-limited
angular resolution or to optimize surface brightness sensitivity. While the FFT
is the basis for most radio astronomical imaging, it is also possible simply to
compute the inverse Fourier transform directly for any point on the sky within
the nominal field of view, an approach we adopt here for heuristic reasons. Hence,
we can write the dirty map for an n antenna array with nb = n(n−1)/2 baselines
as

ID(θx, θy) =
1

2nb

n∑
j=1

n∑
k>j

[Vjk(u, v)e−i(θxu+θyv) + V ∗
jk(u, v)e+i(θxu+θyv)]. (6)

In principle, an array can comprise antennas that also measure the total power
entering each antenna, Zi, equivalent to a visibility measurement at (u, v) =
(0, 0). Including this measurement for each antenna yields the more general
expression (Vivekanand & Kulkarni, 1991)

I◦
D(θx, θy) =

1

n2

{ n∑
i=1

Zi +

n∑
j=1

n∑
k>j

[Vjk(u, v)e−i(θxu+θyv) + V ∗
jk(u, v)e+i(θxu+θyv)]

}
(7)

We refer to radio interferometric arrays that do not include total power measure-
ments as “correlation arrays” and those which do include such measurements as
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“total power arrays”. Inclusion of total power measurements by each antenna in
an array is not practical for reasons we discuss in Section 3.2 and Section 4.2;
nor are they necessary for imaging purposes. The total flux density of a source
can be introduced into imaging as a prior measured by, for example, a single
dish. As we shall see, however, the inclusion of total power measurements when
evaluating the map rms noise does have a significant impact.

In what follows we consider Fourier synthesis mapping in the so-called “snap-
shot” imaging regime, by which we mean the maximum integration time, τ ,
during which the array geometry is effectively fixed. While there are some sub-
tleties associated with selecting an appropriate value for τ (see, for example
Thompson et al. 1986; Bridle & Schwab 1989) it is of order seconds to tens of
seconds for current and planned radio arrays used for solar observations (Ap-
pendix A). We discuss circumstances under which the assumption of snapshot
imaging can be relaxed in Paper II.

3. Noise in Radio Observations: Preliminary Considerations

At radio wavelengths the Rayleigh-Jeans approximation is valid and it is common
to refer signals to equivalent temperatures. A power input may be expressed as
P = kBT∆ν, where kB is Boltzmann’s constant, ∆ν is the frequency band-
width of the signal, and T is the equivalent temperature. It is convenient to
distinguish between the additive noise contributed by a given antenna and the
noise contributed by the celestial source observed by the antenna. The former is
described in terms of the system temperature Tsys, which involves a number of
contributions:

Tsys = Trx + Tbg + Tsky + Tspill + Tloss + Tcal (8)

where terms on the right-hand side are the contributions from the antenna
receiver, from the galactic or cosmic microwave background, from the atmo-
sphere, from ground radiation scattering into the feed, from losses due to various
electronic elements, and from possible contributions due to a calibration signal
injected into system. Trx is typically the largest contribution to Tsys, but not
always (e.g., at meter wavelengths Tbg dominates).

The incremental contribution of the radio source to the system noise is char-
acterized by the antenna temperature Tant = SAe/2kB where Ae = ηA is the
effective area of the antenna, η is the aperture efficiency, A is the geometrical
area of the antenna, and S is the total flux density incident on the antenna.
A convenient figure of merit for the sensitivity of an antenna is the system
equivalent flux density, defined as SEFD= Tsys/K where K = Ae/2kB . The
SEFD is the flux density of a hypothetical (unpolarized) source that would
double Tsys. A lower value of the SEFD indicates better sensitivity, implying
improvements may be realized by reducing Tsys and/or increasing Ae. Although
Tsys and Tant are commonly used to describe system noise and source noise, it
is convenient for our purposes to use N = SEFD instead of Tsys to refer to the
noise contribution from an antenna, and S = Tant/K to refer to the incremental
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source contribution instead of Tant. N is an attribute of an antenna and S is an
attribute of the source.

For most sources studied by radio telescopes S ≪ N (i.e., Tant ≪ Tsys) and,
as we shall see, the noise properties across an image are uniform and easily
quantifiable. Implicit in this case is the assumption that a radio interferometer
yields nb independent measurements of the complex visibility function so the
SNR of a synthesis image scales as

√
nb. Kulkarni (1989) pointed out that

this cannot be true, in general, given that there are only n independent noise
contributions N and n signal contributions S. It is not possible to produce nb

independent quantities based on 2n measurements. There must be correlations
between antenna baselines. The theory of self-noise has been developed in several
papers including work by Crane & Napier (1989); Anantharamaiah et al. (1989);
Kulkarni (1989); Anantharamaiah et al. (1991); Vivekanand & Kulkarni (1991),
and Dewey (1994). The most extensive treatment is that of Kulkarni (1989),
who considered noise in radio synthesis images for sources of arbitrary strength
observed by correlating interferometers with arbitrary numbers of elements.

We now discuss noise in radio measurements. In developing an understanding
of noise and self-noise in the sections below we refer to simple unpolarized sources
observed at the phase tracking center by various numbers of antennas in limits
where S ≪ N or S ≫ N . Since we consider regimes that are outside the norm
of most radio telescopes, we develop some intuition by first considering noise
in single-dish observations, a two-element interferometer, and then generalizing
to an n-element interferometer. For simplicity we consider measurements of an
unpolarized source.

3.1. Single Antenna

A single dish with an effective area Ae can be used as a total power radiometer for
continuum observations over some frequency bandwidth ∆ν ≪ ν and integration
time τ . Consider an unresolved source (i.e., θS < θSD ∼ λ/D) with a flux density
S at the center of the single dish beam The signal rms measured by a total power
radiometer is given by the ideal radiometer equation:

σD =
S + N

M
=

Z

N
, (9)

where M =
√

∆ντ (see, e.g., Condon & Ransom 2016 for a derivation). Single
dish observations are intrinsically total power measurements. We ignore non-
ideal and variable contributions to the input signal due to, for example, receiver
gain variations.

It is usually the case that the source signal S is very weak compared to system
noise N . With S ≪ N we have

σSD ≈ N

M
=

2kBTsys

MAe
(10)

and SNR = S/σSD = SM/N . For fixed M the SNR is increased by minimizing
N ; i.e., by maximizing Ae and minimizing Tsys. In the case where the source
signal is strong compared to the system noise, S ≫ N , and
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σSD ≈ S

M
=

2kBTant

MAe
(11)

and SNR = M . In this case, Ae and Tsys are irrelevant, a result that is well known.
If a map is made using a single dish using rastering techniques, a grid of discrete
pointings, or a focal plane array the on-source noise is given by Equation (11)
and the off-source noise is given by Equation 10.

Now consider the case where a strong, uniformly bright, and extended source
with a brightness temperature Tb is observed by the single dish; for example,
a uniformly bright disk of diameter θS . When θS < θSD the signal rms on the
source is given by Equation 11. Suppose D is increased. Then θSD decreases
and beyond some value of D we have θS > θSD and the antenna temperature
saturates at Tant = Tb. A further increase in D does not lead to a further increase
in Tant. In this case, σD decreases as 1/Ae in Equation 11.

3.2. Two-element Correlating Interferometer

We now consider a two-antenna correlation interferometer, the basic building
block of a Fourier synthesis array. Assume that each antenna has effective area
Ae and that they are separated by a distance d. The two antennas are assumed
to have identical electronics and orientations so that N is also the same for
each antenna. The antenna baseline is sensitive to angular scales θINT ∼ λ/d.
Consider an observation of a source on the zenith with a total flux density
S at the phase-tracking center of the interferometer. In general, the baseline
measures a visibility with a correlated flux density amplitude SC < S. The noise
fluctuations in the correlated flux are independent of those in the total signal and
must therefore be added in quadrature to the total. The signal rms is therefore
(Crane & Napier, 1989)

σ2 =
1√
2M

[
S2
C + (S + N)2

]1/2

. (12)

We first consider a point source with a flux density S observed at the phase
center. Then SC = S and Equation 13 reduces to the well-known result

σ2 =
1

M

[
S2 + SN +

N2

2

]1/2

. (13)

For S ≪ N we have

σ2 =
N√
2M

(14)

and SNR = S/σ2 =
√

2MS/N . Comparing Equation 14 with Equation 10, it is
seen that if the single dish has an effective area ASD = 2Ae - that is, the sum of
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the areas of the two antennas in the interferometer - Equation 10 becomes σSD =
N/2M and SNR= 2MS/N . The sensitivity of a two-element interferometer to
weak sources, all other things being equal, is a factor

√
2 less than that of a single

dish with an effective area equal to that of the two single antennas combined.
This is due to the fact that information in the auto-correlations, or total powers,
is not included. In the opposite limit S ≫ N the source flux dominates:

σ2 =
S

M
(15)

and again SNR = M , which is independent of Ae and Tsys, the same as the
single-dish case.

The fact that the noise is correlated between antennas leads to an rms that is
a factor

√
2 larger than it would be for uncorrelated noise. It is straightforward to

show (Vivekanand & Kulkarni, 1991) that inclusion of total power measurements
in Equation 6 yields

σ2 =
1

M

(
S +

N

2

)
. (16)

In this case, when S ≪ N , σ2 = N/2M , the same expression as for a single dish
with the same area as the sum of the two antennas in the interferometer. When
S ≫ N , we again have σ2 = S/M and Ae is again irrelevant for an unresolved
source. If we compute the direct Fourier transform of the flux density at the phase
tracking center for the two element interferometer using Equation 5 we simply
have I◦

D(0, 0) = S. Including the total power measurements per Equation 7,
however, we find that

ID(0, 0) =
S + N

2
+

S

2
= S +

N

2
(17)

and we see that σ2 = I◦
D(0, 0)/M and SNR= M .

Let us now consider a strong extended source. Equation 12 indicates that
regardless of the correlated component SC , there is a contribution from S + N .
In particular, as SC → 0 due, for example, to the source filling the antenna FOV
with a source of uniform brightness and being effectively “resolved out” by this
baseline, the rms noise is

σ2 =
S + N√

2M
. (18)

When S ≪ N we again have Equation 14 but when when S ≫ N ,

σ2 =
S√
2M

. (19)

This is the same form as Equation 14 but with the source noise S playing the
role of N . Since S is uncorrelated between antennas in this case, σ2 is reduced
by factor of

√
2. The situation is analogous to a system with “hot receivers”
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and a system temperature Tant. For a very extended source of mean brightness
temperature Tb that fills the antenna field of view Tant = Tb as was discussed in
§3.1.

3.3. Correlating Array of n Antennas

We now generalize to a correlating array comprising n antennas. An analytical
expression analogous to Equation 13 for the signal rms cannot be given for the
general case, as we discuss below. However, returning to the case of a point
source at the phase tracking center, it can be shown (Appendix B; see also
Anantharamaiah et al. 1991; Vivekanand & Kulkarni 1991) that the source rms
is

σn =
1

M

[
S2 +

2SN

n
+

N2

n(n− 1)

]1/2

. (20)

When n = 2, Equation 13 results. When S ≪ N , with nb = n(n − 1)/2,
Equation 20 reduces to

σn =
N

M
√

2nb
. (21)

As n becomes large, 2nb ≈ n2 and so

σn =
N

nM
=

2kBTsys

nAeM
. (22)

We see that the noise approaches that of a single dish (Equation 10) with a total
effective area nAe, and SNR = SMn/N . For S ≫ N , Equation 20 once again
yields σn = S/M and SNR = M , which is independent of the number antennas,
their effective area, or their summed area.

By including total powers the expression for the point source rms is simply

σn =
1

M

(
S +

N

n

)
. (23)

Clearly, as the number of antennas n increases, Equation 20 converges to Equa-
tion 23. Note that the impact of the source signal becomes comparable to the
system noise under relatively modest conditions, when nS ∼ N . Both equations
yield the same limits for S ≪ N and S ≫ N for large n. If Equation 7 is used
to compute the flux density at the phase tracking center we have

I◦
D(0, 0) =

S + N

n
+

(n− 1)S

n
= S +

N

n
(24)

and so σn = I◦
D(0, 0)/M and, again, SNR = M at the location of the point

source.
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For an extended source we again suppose SC → 0 on all baselines. Summing
over all nb baselines and using Equation 12 we find

σn =
1

M

[
(S + N)2

2nb

]1/2

=
1

M

S + N√
2nb

(25)

which, for one antenna baseline, yields Equation 18. It is seen that in the case
of an extended source observed by an array with large n we always have a
contribution to the noise of (S + N)/nM which, for S >> N ,

σn ≈ S

nM
=

2kBTant

MnAe
, (26)

where S again plays the role of N in Equation 22 and the baseline noise is deter-
mined by “hot receivers” and a system temperature of Tant. When an extended
source of brightness Tb is resolved by the antennas, Tant is replaced by Tb in
Equation 26. A critical difference between a point source and an extended source
is that for a point source all baselines are fully correlated (S = SC) and so there
is no uncorrelated contribution from the “hot receivers”, only instrumental noise
N ; otherwise, for extended sources, a uniform noise floor given by Equation 25
or Equation 26 is present.

4. Noise in Fourier Synthesis Maps at Radio Wavelengths

We now consider the case of an arbitrary radio brightness distribution and noise
both on the source and off the source; i.e., where no radio emission is otherwise
present on the sky. We first consider correlation arrays, widely used in practice,
and then consider (hypothetical) total power arrays.

4.1. Correlation Array

A correlation array is one that makes use of all correlations between antennas,
but does not make use of total power measurements. The rms at any point in
the field of view for a correlating array can be formed from the square root
of the image variance. The image variance for a correlating interferometer of n
antennas observing a source of arbitrary strength and brightness distribution
has been derived by Kulkarni (1989). The result, expressed in terms of [nb ×nb]
covariance matrices, is cumbersome. In general, the image rms depends on the
details of the source brightness distribution, its strength, and the interferometric
array used to observe it. The distribution of self-noise across an image obtained
with a correlating interferometer with n antennas is not obvious a priori; it must
be calculated explicitly for the circumstances in question although the discussion
in previous subsections provides guidance.

To gain insight into the general case we consider the map rms for three
simple source models: a point source, a point source observed against a uniform
background, and an extended source. For the extended source we consider a
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Figure 1. Comparison of model sources observed by EOVSA, the JVLA, and the ngVLA at
a nominal frequency of 6 GHz. In each panel the dashed blue line represents ID, the solid blue
line is |ID + S/

√
2nb|, the dashed red line represents the noise floor, and the green symbols

trace σn. Top row: the map and map rms observed for a point source with S = 1; Second row:
the same for a point source with a flux density Spt = 0.2 and a total flux Spt +Sbg = 1; Third
row: The same for a Gaussian source with θG = 30” and a total flux S = 1. N = 0 in all cases.
Note the differences in scale for the ordinate.

simple symmetric Gaussian for which the expressions for the covariance matrix

elements greatly simplify (Appendix B). In particular, in anticipation of Paper

II, we compute the map rms in 1D (East-West) for three arrays: the Expanded
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Owens Valley Solar Array (Gary et al. 2018; EOVSA2; n = 13), the Jansky
Very Large Array in its C configuration (Perley et al. 2011; JVLA; n = 27), and
the core of the next generation Very Large Array (Murphy et al. 2018; ngVLA;
n = 114). EOVSA is a solar-dedicated instrument that observes the Sun from 1-
18 GHz (λ1.67−30 cm), and the JVLA is a general purpose instrument capable
of observing the Sun, also from 1-18 GHz. We include the proposed ngVLA
because the antenna configuration of the core antenna distribution is relatively
well established and it serves to illustrate the advantages of a large-n array. It will
be capable of observing the Sun from 1.2-116 GHz. The JVLA C configuration
and the ngVLA core have comparable sizes, with maximum antenna baselines of
approximately 3 km. EOVSA, has a maximum baseline of approximately 1.2 km.
We discuss these telescopes further in Paper II.

We adopt a representative frequency ν = 6 GHz (λ = 5 cm) for all examples
given. We take the total flux density to be S = 1 unit and N = 0. Results are
shown in Figure 1. The top row shows the observation of a strong point source by
each of the three arrays. The dotted blue line indicates the source map ID(θx)
computed using Equation 6 and the solid blue line shows its absolute value. The
green symbols show the corresponding map rms σn, computed as the square
root of the variance, scaled by M . The dashed red line indicates the zero-level
in the top row. Since all baselines are fully correlated for a point source, there
is no uncorrelated “hot receiver” contribution to the noise as we discussed in
Section 3.2.

The second row shows the result for a point source of flux density Spt = 0.2
on a uniform background contributing Sbg = 0.8, their sum being S = Spt +
Sbg = 1. The dashed blue line is again ID(θx), the solid blue line represents the
|ID + S/

√
2nb|, the green symbols show the scaled rms, and the red dashed line

is S/
√

2nb = 1/
√

2nb. The correlated flux manifests approximately as the scaled
PSF, but there is also an uncorrelated self-noise component (“hot receiver”) that
is added to the correlated component; that is, σn(θx) ≈ [Spt ⋆ PSF + (Spt +
Sbg)/

√
2nb]/M . Careful inspection of the EOVSA rms (green symbols) shows

that they do not match the solid blue line, differing by 9% at the location of the
source. The difference at the source location is 4% for the JVLA and 0.7% for
the ngVLA. Note that the same result would be obtained if we instead set the
uniform background flux to zero (Sbg = 0) and let N = 0.8. That is, a noise floor
is always present as the result of uncorrelated contributions from S and/or N .
For both of the above examples, the map rms is not uniform across the FOV. The
on-source noise is ≈ S/M and SNR≈ M . The off-source noise is approximately
proportional to the PSF and, therefore, the source sidelobes. Hence, for a point
source observed against a background of uniform brightness, the correlated self-
noise can be approximately removed from the map by subtracting the scaled
PSF, leaving uniform noise plus a residual that decreases with n.

The third row shows results for a symmetric Gaussian source observed by each
array. The full width at half maximum of the model Gaussian source is θG = 30”

2The array is being upgraded to a 15-element array (expected to complete in 2026), which
will have an improved PSF performance. The analysis presented here is based on the current
13-element array.
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Figure 2. Comparison of model sources observed by the JVLA at a nominal frequency of
6 GHz. The source size varies from a point source to one that is well-resolved. All sources have
S = 1 and N = 0. Notice that the off-source rms rapidly approaches the noise floor given by
Equation 26 as the source is resolved. The different lines are explained in the text. Note the
differences in scale for both the ordinate and abcissa as the source size increases and the map
flux per beam decreases.

and the integrated, or total, flux in the source is again 1 unit. The ordinate of
each of the three plots varies because the source is resolved to varying degrees by
each array and the peak flux density per beam therefore varies between arrays,
particularly between EOVSA and the JVLA/ngVLA. The lines are the same as
those in the top and middle rows. The black line is the model source. In this case,
the difference between the green symbols and the solid blue lines is even more
striking for EOVSA, differing by 11.5% at the source maximum. It is 4% and
0.7% for the JVLA and ngVLA, respectively. Note that while the EOVSA PSF
has a relatively narrow central lobe, it has large inner sidelobes as a result of
sparse and non-optimum sampling of the uv plane. The convolution of the PSF
with the Gaussian model leads to a dirty map in which the source is apparently
much broader than it is in reality.
While the self-noise contribution of a point source to off-source regions can
be completely removed through deconvolution, such is not the case for strong
extended sources. As n increases the map rms increasingly resembles ID and the
off-source noise can be mitigated to the extent that sidelobes can be deconvolved
from the map. Nevertheless, a noise floor will always exist, rapidly approaching
≈ S/

√
2nbM as the source is resolved and S becomes large. Figure 2 illustrates

this transition explicitly for a 6 GHz source observed by the JVLA, for which
the angular resolution is nominally 3.4”. We have calculated the source map and
rms in 1D for a point source and for Gaussians with FWHM values of 1”, 2”, 5”,
10”, 20”, 50”, and 100”. All sources are again such that S = 1 and N = 0. The
lines plotted again correspond to those shown in Figure 1 with the exception of
the solid red lines. These show the difference between the computed rms and the
absolute value of the dirty map; i.e., σI − |ID|, which represents an estimate of
the residual in the clean map (not including the scaling factor M).
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We have shown that as the number of antennas increases the calculated rms
for an extended source rapidly approaches the dirty map plus the noise floor,
scaled by M . We therefore conclude that as n becomes large we have for extended
sources

σI(θx, θy) ≈ 1

M

[
ID(θx, θy) +

S + N√
2nb

]
. (27)

In summary, for extended sources observed with correlation arrays, the map
rms increasingly resembles ID plus a uniform noise component that depends on
both S and N as n increase. While off-source self-noise due to source sidelobes
can be mitigated through deconvolution to an increasing degree with increasing
n, it cannot entirely removed. Moreover, a noise floor is always present as a result
of uncorrelated contributions from the total source flux S and instrumental noise
N . The noise floor decreases with increasing n but it cannot be removed through
deconvolution.

4.2. Total Power Array

From the discussion of single dish observations in Section 3.1, we expect a uni-
form rms σSD = N/M = 2kBTsys/MASD in regions free of strong emission and
we would expect self-noise with σSD = S/M to be relevant only at locations on
the strong source. Consider a correlation array where the sum of the antenna
areas is the same as that of the single dish: ASD = nAe. We would expect the
off-source noise to be σn = σSD = N/M = 2kBTsys/MnAe, but we found in that
it is instead σn = S/nM = 2kBTant/MnAe (Equation 25). How do we reconcile
expectations from single-dish mapping with Fourier synthesis mapping of strong
sources with a correlation array?

Single dish radiometers make total power measurements but correlation arrays
only use cross-correlations between antennas and they do not include total power
measurements. Vivekanand & Kulkarni (1991) and Anantharamaiah et al. (1991)
show, however, that the inclusion of total power measurements in calculating
the covariance matrix greatly simplifies the expression for the image variance
given by Kulkarni (1989) to an elegant and intuitive form, one that we hinted
in Sections 3.2 and 3.3 (Equations 17 and 24). Denoting the total power for
antenna i as Zi = Si + Ni the inclusion of covariance terms between Zi and
Zi, Zi and Zj , of Zi with all baselines containing antenna i, and of Zi with all
baselines not involving antenna i allows a square to be completed in the sum
over all covariances. The result for the rms anywhere in the map is just

σI(θx, θy) =
1

M

[
I◦D(θx, θy) +

N

n

]
. (28)

This raises a subtle and important distinction. For a total power array, the
self-noise in the total flux S measured by each antennas is fully correlated
with that of every other antenna while the system noise N of each antenna
remains uncorrelated between antennas. In this case, the total flux S can be
subsumed into the dirty map and a uv sample at (u, v) = (0, 0) is included
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in the PSF; i.e., we have V (0, 0) = S contributing to the map. Under these
circumstances, the sidelobes and self-noise may be removed completely from off-
source locations through deconvolution, leaving only the uncorrelated system
noise N/nM , in agreement with the single dish result. This being the case,
why aren’t total power arrays the norm? There are two reasons: first, there
is no particular advantage in producing a synthesis map made with a total
power array compared with a correlating array. Total power measurements can
be introduced to image reconstruction as a prior, if necessary, as discussed in
Section 2. Second, for most modern radio astronomical observations S << N
and self-noise plays no significant role in a Fourier synthesis map made with
either a total power array or a correlation array. The map rms is uniform with
σn = N/M

√
2nb ≈ N/Mn. A total power array is a factor

√
n/(n− 1) more

sensitive than a correlation array, which is 8%, 2%, and 0.4% for EOVSA, the
JVLA, and the ngVLA core, respectively. The penalty in sensitivity incurred
by neglecting total power measurements rapidly diminishes with increasing n.
The expense of total power measurements with each antenna is not justified, in
general, especially for large-n arrays. It is for these reasons that no total power
arrays have been implemented in practice. It must be acknowledged, however,
that observations of strong extended sources pay a significant noise penalty
because S/nM >> N/nM . We explore the consequences of this in Paper II
for solar observations.

5. Concluding Remarks

We have outlined the theory of self-noise in Fourier synthesis maps at radio
wavelengths in the snapshot imaging regime. We first considered observations
of simple sources — point sources or very extended sources — using a single
dish, a two-element interferometer, and an n-element array to develop intuition.
We then considered the case of an arbitrary brightness distribution of arbitrary
strength and the noise both on and off the source. For a correlation array, one
for which total power measurements are not included, the map rms must be
computed explicitly, in general. For point sources, the map rms is just the scaled
PSF; for a point source observed against a uniform background, the map rms
is the scaled PSF plus an offset due to uncorrelated noise (instrumental plus
self-noise). For an extended source, illustrated by a Gaussian, the map rms has
a complex distribution for a small-n array like EOVSA. While the dirty map ID
resembles the map rms, the two differ in significant ways. However, as n becomes
large, the map rms approaches ID, offset by the uncorrelated noise floor and
scaled by M =

√
∆ντ . Off-source self-noise can therefore be mitigated to an

increasing degree through deconvolution as n increases, but the uniform noise
floor due to uncorrelated source and instrumental noise cannot be removed. We
compare this result with a total power array, and n-element correlating array
that includes total power measurements. In this case, the map rms is strictly
proportional to I◦

D plus uniform instrumental noise, even for extended sources.
In this case, the dirty map I◦

D includes the total source flux V(0, 0) = S. The
self-noise contribution can be completely removed from snapshot maps through
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deconvolution, leaving only a uniform contribution due to uncorrelated instru-
mental noise. In practice, however, the expense of implementing total power
arrays is not justified for the vast majority of observations of celestial sources.

In Paper II, we use these results to consider limitations imposed by self-noise
on solar observations at radio wavelengths on current and planned radio Fourier
synthesis imaging arrays. Our intent is to understand the degree to which self-
noise is a limiting factor for various science use cases, with the aim of developing
instrument requirements and imaging strategies that minimize its impact.
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Appendix

A. Snapshot Imaging Regime

In §2 the snapshot imaging regime was described as that in which the array

geometry remained effectively fixed for an integration time τ . There are sub-

tleties, however. The snapshot integration time also depends on the frequency

bandwidth, ∆ν, and the size of the domain being imaged. A given antenna

baseline in an array traces out an elliptical track in the uv plane with time due to

the Earth’s rotation, a fact exploited by Earth rotation aperture synthesis. The

track is quasi-azimuthal. A given uv point also changes radially with frequency,

which can be exploited for the purposes of multi-frequency synthesis. Both Earth

rotation aperture synthesis and multi-frequency synthesis are discussed further

in Paper II. An integration time that is too long results in temporal smearing of

the visibility measurement on a given baseline. Similarly, the use of too large a

frequency bandwidth results in smearing in the radial direction.

Consider once again a point source. It suffers no radial smearing at the phase

tracking center but it suffers an increasing degree of bandwidth smearing as

its angular distance from the phase tracking center increases. As a result, the

amplitude of the point source is reduced. It is straightforward to estimate the

maximum bandwidth over which the visibility data can be averaged to minimize

the bandwidth smearing over the imaging FOV (Bridle & Schwab, 1989). For

example, to ensure an amplitude loss of no more than 1% when imaging the

full disk of the Sun with an array of 2 m antennas — that is, no more than 1%

at the limb — the bandwidth should be no more than ∆ν = 4.4 MHz at any

wavelength. For an array of 25 m antennas, with their wavelength-dependent

FOV, we require as reduction, say, of no more than 1% in amplitude at the

half-power point of the FOV. The bandwidth is then ∆ν ≈ 90/λ MHz, yielding

∆ν ≈ 3 MHz at 1 GHz and δν ≈ 60 MHz at 20 GHz. This is not to say that a

large effective bandwidth cannot be created for multi-frequency synthesis, but

the net bandwidth must be channelized such that each frequency channel is no

larger than these values.

Similar to bandwidth smearing in the radial direction is quasi-azimuthal

smearing in the image domain as the result of time averaging. Time-average

smearing also increases with angular distance from the phase-tracking center.

To ensure that time-average smearing is no worse than bandwidth smearing -

that both are 1% or less over the angular domain being imaged, for example - we

take τ ≈ ∆ν/νωe where ωe = 7.27×10−5 is the angular rate of Earth’s rotation.

For an array of 2 m antennas observing the full disk of the Sun with no more

than 1% smearing across the source due to finite bandwidth or time averaging,

we have τa = 60 s at 1 GHz and 3 s at 20 GHz; for an array of 25 m antennas

imaging the Sun, we have τa ≈ 40 s at all wavelengths.

The values given here for τ and ∆ν are illustrative. Specific snapshot imaging

strategies depend on the details of the array and the science use case in question.
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B. Image Variance of a Strong Symmetric Source

The complete and general expression for the variance of a Fourier synthesized
image at radio wavelengths for an array comprising n antennas is given by
Kulkarni (1989):

σ2
I (θx, θy) =

1

n2
b

n∑
j=1

n∑
k>j

n∑
j′=1

n∑
k′>j′

{
ajk(θx, θy)aj′k′(θx, θy)C[vcjk, v

c
j′k′ ]

+ajk(θx, θy)bj′k′(θx, θy)C[vcjk, v
s
j′k′ ]

+bjk(θx, θy)aj′k′(θx, θy)C[vsjk, v
c
j′k′ ]

+bjk(θx, θy)bj′k′(θx, θy)C[vsjk, v
s
j′k′ ]

}
where C[vcjk, v

c
j′k′ , C[vcjk, v

s
j′k′ ], C[vsjk, v

c
j′k′ ], and C[vsjk, v

s
j′k′ ] are [nb × nb] co-

variance matrices of correlations between antenna baselines and

ajk(θx, θy) = cos[2π(uθx + vθy)]

bjk(θx, θy) = sin[2π(uθx + vθy)]

where u and v are defined in §2. To simplify the discussion while retaining key
insights into the nature of source variance for strong signals, we assume that the
source is symmetric and centered on (θx, θy) = (0, 0). An example is a circular
Gaussian with a full width at half maximum of θG, as discussed in §3.4. Since
the source is symmetric about the phase-tracking center the real part of the
visibility is non-zero and the imaginary part is zero. We denote the visibility on
baseline jk as Vjk. Under these assumptions the image covariance becomes

σ2
I (θx, θy) =

1

n2
b

n∑
j=1

n∑
k>j

n∑
j′=1

n∑
k′>j′

{
ajk(θx, θy)aj′k′(θx, θy)C[vcjk, v

c
j′k′ ]

+bjk(θx, θy)bj′k′(θx, θy)C[vsjk, v
s
j′k′ ]

}
The expression for the covariance matrix elements depends on their type: the
diagonal elements comprise covariances between like baselines – or simply, vari-
ances (e.g., b12 with b12 - type a); off-diagonal elements that share a common
antenna (e.g., b12 with b13 - type b); and off-diagonal elements involving baselines
that share no antennas (e.g., baseline b12 with b34 - type c). The expressions for
the diagonal elements (type a), of which there are nb, are:

C[vcjk, v
c
jk] =

(S + N)2 + V 2
jk

2M2
; C[vsjk, v

s
jk] =

(S + N)2 − V 2
jk

2M2

The covariances of off-diagonal elements of type b, of which there are 2nb(n−2),
are
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C[vcjk, v
c
jl] =

(S + N)Vkl + VjlVjk

2M2
; C[vsjk, v

s
jl] =

(S + N)Vkl − VjlVjk

2M2

and the covariances of off-diagonal elements of type c, of which there are nb(n−
2)(n− 3)/2, are

C[vcjk, v
c
lm] =

VjlVkm + VjmVkl

2M2
; C[vsjk, v

s
lm] =

VjlVkm − VjmVkl

2M2

The image variance is straightforward to calculate for specific arrays but since the
number of terms increases as n2

bl ∼ n4 it can become computationally intensive
for large-n arrays. Note that for a point source with a flux density S, we have
Vjk = S for all baselines and so

C[vcjk, v
c
jk] = [(S + N)2 + S2]/2M2 ; C[vsjk, v

s
jk] = [(S + N)2 − S2]/2M2

C[vcjk, v
c
jl] = [(S + N)S + S2]/2M2 ; C[vsjk, v

s
jl] = [(S + N)S − S2]/2M2

C[vcjk, v
c
lm] = 2S2/2M2 ; C[vsjk, v

s
lm] = 0

for matrix elements of type a, b, and c, respectively, from which Equation 21
follows.
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