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ABSTRACT

Magnetohydrodynamic simulations of the solar corona and solar wind are sensitive to conditions in the sub-
Alfvénic plasma at the base of the solar corona because the structure of the simulated solar corona is determined by
the pressure balance of the plasma and the magnetic field. Therefore, it is important to construct an adequate bound-
ary treatment for the sub-Alfvénic surface, and it is highly preferable to build the model from observation-based
constraints and basic mathematical theories. We examine new boundary treatments based on the ‘‘projected normal
characteristic method’’ for the MHD simulation of the trans-Alfvénic solar wind and solar corona. Our new bound-
ary treatment limits the mass flux escaping through the solar surface. This limit is set to match the solar wind mass
flux Ulysses measured during its first fast-latitude scan of the heliosphere. In addition, combining the projected
normal characteristic method and the mass flux limit, the model produces reasonable contrasts of the plasma tem-
perature and density between the coronal hole and streamer. A two-dimensional version of the time-dependent
MHD simulation with the new boundary treatment is tested using the axisymmetric dipole and quadrupole com-
ponents of the solar magnetic field observed at solar minimum. The new boundary treatment can be characterized
by the specific heat ratio on the surface, and we examined several cases. The solar wind computed with the new
boundary treatment matches the Ulysses measurement at r > 1 AU quite well and simultaneously has good con-
trasts with coronal plasma parameters near the Sun.

Subject headings: methods: numerical — MHD — solar wind — Sun: corona

1. INTRODUCTION

Time-dependent multidimensional MHD simulation provides
a powerful approach to study the dynamics of the solar wind
and solar corona. Because the solar wind is trans-Alfvénic, only
the time relaxation by time-dependent MHD simulation method
is capable of constructing a general multidimensional structure
of the solar wind from the sub-Alfvénic solar surface to the super-
Alfvénic interplanetary space (e.g., Steinolfson et al. 1982; Han
et al. 1988; Linker et al. 1990; Washimi & Sakurai 1993; Wang
et al. 1993; Usmanov 1993).

Observational data of the solar photospheric magnetic field
have been used to define realistic situations and determine the
multidimensional solution of the solar wind during interesting
periods (e.g., Usmanov & Dryer 1995; Riley et al. 1997; Linker
et al. 1999; Mikić et al. 1999; Usmanov&Goldstein 2003). The
numerically steady solar wind that results can also be used as
the background in simulations tracing the response to eruptive
events such as flares and coronal mass ejections (e.g., Wu et al.
1983, 2001; Smith & Dryer 1990; Dryer et al. 1991; Detman
et al. 1991; Groth et al. 2000).

Values for the plasma density and temperature on the solar
surface must also be determined to begin an MHD simulation
of the trans-Alfvénic solar wind. However, because of difficul-
ties in observation, no well-established scheme exists to deter-
mine the boundary distribution of the solar surface plasma density,
temperature, and velocity at the coronal base (�1.01 R�) from
which the simulation region generally starts. Therefore, many
simulation studies simply assign a uniform temperature of (1
2) ;106 K and a plasma number density of (1 2) ;108 cm�3.
These given values can be validated after the simulation com-
pletes. However, it is highly preferable to constrain these values
from the available measurements and theories in physics and
mathematics.

Ulysses measured the solar wind over a wide range of he-
liographic latitudes, and this can give useful constraints to the
simulation. The data obtained during its first fast latitude scan
in 1994–1995 are especially helpful for simulation studies be-
cause this period is at the solar minimum activity phase and the
solar magnetic field had a simple dipole-like structure. We here
consider two properties of the solar wind measured by Ulysses
in 1994–1995. One is the solar wind proton flux escaping from
the Sun. The average flux was about 2 ; 108 cm�2 s�1 normalized
to 1 AU (e.g., Neugebauer 1999). This proton flux is equivalent
to 1 ; 1013 cm�2 s�1, or 1 ; 108 km s�1 cm�3 at 1 R�. Consid-
ering that the open-field regions at solar minimum activity phase
cover about 10%–15% of the entire solar surface, we can esti-
mate the typical average proton flux escaping through the solar
surface,

NVrh i ¼ 6 10ð Þ ; 108 km s�1 cm�3: ð1Þ

Another property is inferred from the analysis by Geiss et al.
(1995), who showed that the temperature at the origin of the fast
solar wind tends to be lower (�1.1 MK) than that of the slower
solar wind (�1.7 MK).
In addition to the temperature contrast at the coronal base ob-

tained from Ulysses measurements, we can also determine the
typical contrast of coronal density from analysis ofmeasurements
of the solar corona, such as the SPARTAN campaign (e.g., Fisher
& Guhathakurta 1994), Yohkoh Soft X-Ray Telescope data (e.g.,
Aschwanden & Acton 2001), the Solar and Heliospheric Ob-
servatory (SOHO) EUV Imaging Telescope (EIT; e.g., Gallagher
et al. 1999), and the SOHO Large Angle and Spectrometric Co-
ronagraph Experiment (LASCO-C2; e.g., Frazin& Janzen 2002).
The density contrast between the coronal hole and streamer
regions varies with observing instrument, time, and height, but
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it typically ranges from 3 to 5 near the solar surface and from 5
to 10 at several solar radii. Such a high density contrast is also a
good target feature to reproduce with the simulation.

In the practice of MHD simulations, the boundary treatment
on the solar surface is important. Because the plasma flow near
the solar surface is sub-Alfvénic, there is nonlinear MHD inter-
action between the solar surface and corona. Therefore, MHD
simulations with a simple boundary condition, such as the fixed
boundary, may be unable to produce steady coronal structure, as
pointed out by Wu et al. (1996).

The projected normal characteristic method has been devel-
oped to deal with the temporal variation of MHD variables on
the sub-Alfvénic simulation boundary surface (Nakagawa &
Steinolfson 1976; Nakagawa 1980, 1981a, 1981b; Nakagawa
et al. 1987; Wu & Wang 1987). It uses the concept of charac-
teristics in a hyperbolic system (e.g., Jeffrey & Taniuti 1964).
The advantage of time-dependent MHD simulation using this
method is that the computed temporal evolution of MHD var-
iables on the sub-Alfvénic computational boundary will match
both the governingMHD equation and the given boundary con-
ditions. There have been several successful simulation studies
in various areas of solar physics using this method (e.g., Wu
et al. 2001).

In this paper, we consider a new boundary treatment model
for MHD simulation of the solar corona and solar wind. Our
boundary treatment has three notable features. (1) It is based
on the concept of the projected normal characteristic method.
(2) The solar surface mass flux is limited so that the simulated
solar wind mass flux will match the Ulysses measurements.
(3) It produces a higher, more realistic contrast of the plasma
conditions between the coronal hole and streamer. The sim-
ulated results satisfy the MHD equations fully, from the inner
boundary to the outer boundary, and, at the same time, have
good agreements with the observed solar wind and corona at
two different heliocentric distances. In addition, the limit of the
mass flux will generate adequate contrast of the plasma density
and temperature; therefore, our boundary treatment will be a
powerful approach to retrieve the three-dimensional structure
of the solar corona and solar wind.

We provide a general description of the MHD code in x 2.
Our boundary model is described in x 3, and its details are in
Appendix B. To test our new boundary treatment, we carried
out two-dimensional MHD simulations for 1:01 R� < r <
300 R�. In order to compare the simulation results with the
Ulysses data, we use the observed axisymmetric dipole and
quadrupole components of the solar magnetic field of 1995
April as one of the boundary conditions. The simulation results
are shown in x 4, and the discussion is presented in x 5.

2. METHOD

2.1. Basic Equations

The basic equations governing the simulated solar wind are
the time-dependent MHD equations in the frame rotating with
solar sidereal angular velocity 6,
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where %, V, B, Pg, E, r, t, ggg, and � are the mass density, velocity
of the plasma flow viewed in the rotating frame, magnetic field
vector, gas pressure, energy density E ¼ %v 2/2þ Pg/(� � 1)þ
B2/2, position vector originating at the center of the Sun, time,
solar gravitational force ggg ¼�GM /r 3 = r, and specific heat ratio,
respectively. This study neglects the solar differential rotation
for simplicity, and the sidereal angular velocity of the solar ro-
tation, j6j, is taken to be 2�/25:3 radian day�1 (or 14N2 day�1).
The specific heat ratio � is assumed to be 1.05 and constant every-
where so that the trans-Alfvénic solar wind will be obtained.

2.2. Simulation Code

The grid system was constructed in the spherical coordinate
system covering the heliocentric distance from 1 to 300 R�. The
cell sizes along the radius �r are fixed at 0.01 R� near the so-
lar surface in order to treat the steep gradient of density. Be-
yond 1.1 R�,�r is set proportional to ln r in the trans-Alfvénic
region and proportional to

ffiffi
r

p
in more distant regions, so that a

total of 256 grid points can cover from 1.01 to 300 R�. The grid
size at the outermost several grid points is fixed at 3.5 R�. The
latitude from the north pole (� ¼ 0) to the south pole (� ¼ �) is
also covered by the grid points with the constant angular inter-
val �� equal to �/128.

The MHD simulation code of our model is based on the con-
cept of total variation diminishing (TVD; e.g., Harten 1983; Brio
&Wu 1988) and the monotonic upstream scheme for conserva-
tion laws (MUSCL; van Leer 1979). The finite-volume method
(e.g., Tanaka 1995) is also used. Letting the column vector U
represent the dependent variables in order,

U ¼ %; %Vr; %V�; %V�; Br; B�; B�; E
� �T

; ð6Þ

the discretized form of the right-hand side of the governing
equations (2)–(5) can be written as

RHSm ¼ � 1

�V

X
Fm =n�sþ Sm; ð7Þ

where the subscript m denotes variables of U in the order of
equation (6), and F, n, and �s represent the flux vector, the
vector normal to the cell boundary surface, and the area of the
cell boundary, respectively. The volume of the numerical cell,
�V , is equal to (�r3/3) �(�cos �)(��)½ �. The area of the cell
interface,�s, is set to r 2�(�cos �)��,�(r 2/2)(sin �)��, and
�(r 2/2)�� for radial, latitudinal, and longitudinal directions,
respectively. The source term S contains the gravitational, cen-
trifugal, and Coriolis forces and the energy source due to these
forces. The longitudinal angular size�� is set equal to��, and
one longitudinal layer is simulated in this two-dimensional sim-
ulation study.

To deal with the large gradient near the inner boundary sur-
face due to the gravity of the Sun and preserve the conservative
quantities, we used a set of normalized conservative variables

(r2%; r2%Vr; r
2%V�; r

2%V�; rBr; rB�; rB�; r
2E): ð8Þ

Note that this normalization does not affect the variables with
the dimension of speed such as V and B%�1/2. The MUSCL
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method is used to raise the order of spatial accuracy for the
characteristic equations. For the interpolation along the radial
direction with varying grid sizes, for example, we used the sim-
ple adjustment

�0Ui�1=2 ¼ �Ui�1=2

�riþ1=2

�ri�1=2
;

�0Uiþ3=2 ¼ �Uiþ3=2

�riþ1=2

�riþ3=2
ð9Þ

and then interpolated the values on the cell boundary at riþ1/2:

Ul
iþ1=2 ¼ Ui þ

1

2
RiCf Li�Uiþ1=2;Li�

0Ui�1=2

� �
; ð10Þ

Ur
iþ1=2 ¼ Uiþ1 �

1

2
Riþ1Cf Liþ1�Uiþ1=2;Liþ1�

0Uiþ3=2

� �
;

ð11Þ

where the subscript i refers to the grid address along the
r-direction andL andR are the matrix forms of the left and right
eigenvectors of the Jacobian matrix J(¼@F/@U), respectively.
These two matrices are normalized so that LR ¼ RL ¼ I (Roe
& Balsara 1996; Cargo & Gallice 1997). The matrix L is given
in Appendix B. The interpolations with equations (10) and (11)
are of third-order spatial accuracy with the flux-limiting func-
tion, Cf (: : : ; : : :),

Cf (a; b) ¼ 1� �

2
minmod(a; !b)þ 1þ �

2
minmod(b; !a);

ð12Þ

and the minmod(: : : ; : : :) function,

minmod(x; y) ¼
sgn(x)min(jxj; jyj); xy > 0;

0; otherwise;

�
ð13Þ

where � ¼ 1/3 and ! ¼ (3� �)/(1� �). While the adjustment
with equation (9) is insufficient, we confirmed that this worked
well in conjunction with equation (12). Finally, the numerical
flux at the cell interface, F�

r; 1þ1/2, is evaluated in accordance
with the TVD method:

F�
r; iþ1=2 ¼

Fr(U
r
iþ1=2)þ Fr(U

l
iþ1=2)

2

� 1

2
Rj+jL(Ur

iþ1=2 � Ul
iþ1=2); ð14Þ

where the matrix j+j is diag(jk1j; : : : ; jk7j) and all matrices
L, R, and j+j are evaluated with Roe’s average of Ur and Ul

(Roe 1981). Our code is dimensionally unsplit, and the nu-
merical flux on the cell interface in the latitudinal direction, F�

� ,
is obtained in the same manner.

The two-step explicit method we used to trace the temporal
evolution of the MHD variables can be written as

Up ¼ Un þ �t

2
RHS(Un); ð15Þ

Unþ1 ¼ Un þ�tRHS(Up); ð16Þ

where the superscripts n, p, and nþ 1 refer to the known state at
the nth time step, the provisional state at the intermediate time

step, and the updated state, respectively. The time increment
step�t is determined with the Courant-Friedrichs-Lewy (CFL)
condition (eq. [A6]).

2.3. Treatment of :=B

The treatment of the nonzero divergence of the magnetic
field,:=B, is important for the numerical stability and accuracy
in multidimensional MHD simulations. One orthodox strategy
is to employ the vector potential presentation, B ¼ :<A, which
automatically guarantees a divergence-free magnetic field. In
this method, the governing equations have second-order spa-
tial derivatives of A that may make boundary treatments com-
plicated. The constraint transportation (CT) method (Evans &
Hawley 1988; Tóth 2000) is another powerful technique to sup-
press the emergence of nonzero divergence of the magnetic
field. However, with this method the initial small nonzero:=B
may remain all through the computation. Because of these rea-
sons, in this paper, we used two other methods to reduce the
nonphysical effects of :=B.
The first is the Powell correction, where the artificial terms

�V(:=B), �B(:=B), and �(V =B)(:=B) are added to the
right side of the induction, momentum, and energy equations,
respectively (Brackbill & Barnes 1980; Powell 1994). The ar-
tificial term added to the induction equation works to clean up
:=B effectively in coronal holes and interplanetary space. This
can be understood by seeing the equation

@

@t
þ V =:

� �
:=B

%

� �
¼ 0 ð17Þ

that is obtained by coupling the modified induction equation (4)
and the continuity equation (2). Because this equation means
that the numerical monopole :=B will move together with the
plasma, :=B in the region where the plasma has substantial
flow speed will be swept away. The other added terms work to
cancel the nonphysical forces due to nonzero :=B in the entire
computational domain.
The other method solves the Poisson equation,

:= (:�m)þ: =B ¼ 0; ð18Þ

and then replaces the magnetic field

B0 ¼ Bþ:�m ð19Þ

at every time step (Schmidt-Voigt 1989; Tanaka 1995). This pro-
cedure can remove the magnetic monopole completely. How-
ever, it is expensive in computation. Thus, instead of solving
fully, our code calculates several or 10 iteration steps of the re-
laxation equation

@�0
m

@t 0
¼ := (:�0

m)þ:=B ð20Þ

with the time increment step �t 0 (<�t). Although the value of
�0

m obtained in this way does not satisfy equation (18) and thus
the numerical monopole cannot be fully removed, the replace-
ment of the magnetic field with

B0 ¼ Bþ:�0
m ð21Þ
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can reduce the residual divergence of the magnetic field to a suf-
ficiently small size until the time relaxation of the MHD equa-
tion can be completed. By using both the Powell correction and
the replacement procedure with equation (21), the divergence
of the magnetic field in both coronal hole regions and streamers
can be reduced sufficiently.

3. TREATMENTS OF THE BOUNDARY SURFACE

To determine variables on the outer boundary surface at
300 R�, we employed a linear extrapolation. Because the solar
wind there is always supersonic/Alfvénic, this treatment is equiv-
alent to a nonreflecting boundary.

On the contrary, the treatment at the sub-Alfvénic solar sur-
face (at 1.01 R�) must be determined carefully at each location,
because we have to consider the nonlinear MHD interactions
between the solar surface and solar corona. The boundary treat-
ment we examined is based on the projected normal charac-
teristic method proposed by Nakagawa (1980) and practically
used by Wu & Wang (1987). Here only some basic aspects of
our treatments are described. The detailed formulation is pre-
sented in Appendix B.

The projected normal characteristic method uses the infor-
mation of only the outgoing MHD waves to update the MHD
variables on the boundary surface because we have no infor-
mation about the incomingMHDwaves. To compensate for the
lack of information and complete the equation system, we must
provide the same number of constraints as the incoming MHD
waves. While some arbitrary choices are allowed when deter-
mining the constraints, the constraints should be determined in
a manner such that the assumptions can reasonably describe the
situation to be simulated.

In this simulation we assume that the radial component of the
plasma flow velocity, Vr, is always outward and less than the
slowMHDwave, 0 � Vr < VS; r (VS; r is defined in eq. [A4]), in
order to avoid increasing the number of choices of the boundary
treatment and for simplicity. The non-negativity is enforced by
the boundary treatment shown later, and whether Vr � VS; r is
monitored during the simulation. In this case, three of the eight
MHD wave velocities (k1, k2, and k3 in eq. [A1]) are always
negative at all computational grid points on the solar surface at
all time steps. Thus, there are always three outgoing and five
incomingMHDwaves on the inner boundary. Therefore, in this
study, the number of constraints to be determined is five.

First, we assume that the radial component of the solar sur-
face magnetic field is fixed, because we are going to obtain the
quiet solar wind matching the specified solar surface magnetic

field. This assumption yields three constraints (eqs. [B20], [B22],
and [B23]; Yeh & Dryer 1985). As mentioned in x B1, these
three constraints are necessary to keep the magnetic solenoi-
dality. Therefore, we have to always use these three constraints,
which are hereafter labeled BC0.

Two constraints remain to be determined. As mentioned, our
boundary model explicitly limits the solar surface local mass
flux to obtain the appropriate solar wind mass flux at the outer
boundary. In addition, we have assumed that Vr � 0. Therefore,
the remaining two boundary constraints are determined in ac-
cordance with the solar surface mass flux or flow speed.Wewill
hereafter use the proton number flux NVr, and the constraints
will be made for three cases: BC1, low-mass flux when 0 <
NVr < (NVr)c; BC2, no mass flux when NVr ¼ Vr ¼ 0; and
BC3, mass flux limited whenNVr > (NVr)c. In the limited mass
flux case, BC3, the model can adjust by altering the density, the
temperature, or both. The average number flux estimated from
Ulysses data (eq. [1]), 8:0 ; 108 km s�1 cm�3, is used as the
critical number flux (NVr)c. In order to construct the constraints,
we made the straightforward assumptions described in the fol-
lowing sections and tabulated in Table 1.

3.1. Boundary Constraint BC1: Fixed Temperature and
Density for Low-Mass Flux

Wherever 0 < NVr < (NVr)c, we assume that the density and
temperature are fixed. That is, the transition region beneath the
inner simulation boundary supplies the same amount of plasma
and thermal energy as escapes from the Sun when the mass flux
is at a moderate level. The temporal variations of the other
variables are calculated with the characteristic equation (B28)
so that the derived temporal variations on the solar surface will
match the governing hyperbolic MHD system.

It should be noted here that when the magnetic field, B, and
the solar rotation,6, are set to zero, the simulated plasma should
be identical to the Parker solution and only BC1 should be used.
The experimental simulation with B ¼ 6 ¼ 0 confirms that the
differences between the simulated solution and the analytical
Parker solution are less than 0.5%. Thus, the boundary treatment
BC1 that can adjust the solar surface flow speedworkswell in this
hydrodynamic case.

On the other hand, with a magnetic field present, the updated
values of NVr can vary significantly and become less than zero
or greater than (NVr)c. In practice, our simulation code first cal-
culates the temporal evolution of NVr with this boundary treat-
ment, and then it checks whether the provisionally updated NVr

remain between zero and (NVr)c. If the updated NVr is outside

TABLE 1

Boundary Constraints

Label

(1)

Provisional NVr

(2)

Constraints

(3)

Equation

(4)

BC0 .................................. Any values @tBr ¼ 0, (V <B)�; � ¼ 0 . . .

BC1 .................................. 0 < NVr < (NVr)c @tN ¼ 0, @tPg ¼ 0 B28

BC2 .................................. NVr < 0 V ¼ 0, @t(Pg /N
1:05) ¼ 0 B33

BC3a ................................ NVr > (NVr)c NVr ¼ (NVr)c, @t(Pg /N ) ¼ 0 B41

BC3b ................................ NVr > (NVr)c NVr ¼ (NVr)c, @tN ¼ 0 B42

BC3ab .............................. NVr > (NVr)c NVr ¼ (NVr)c, @t(Pg /N
5/3) ¼ 0 B41

BC3ab0 ............................. NVr > (NVr)c NVr ¼ (NVr)c, @t(Pg /N
1:05) ¼ 0 B41

Notes.—Columns, from left to right: (1) the labels of the boundary constraints; (2) the mass flux pro-
visionally calculated with BC1; (3) the given constraints; and (4) the characteristic equations to be solved.
The boundary constraint BC0 (eqs. [B20], [B22], and [B23]) is used to construct all characteristic equations
(eqs. [B28], [B33], [B41], and [B42]).
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of this range, the temporal evolution is recalculated with BC2
or BC3.

3.2. Boundary Constraint BC2: Polytrope Law for Stagnant
Plasma in Closed Field Regions

Wherever the provisionally updatedNVr is less than 0 and the
plasma flow is outward, NVr is reset to zero and the density and
gas pressure will adjust to maintain the polytropic relation
(eqs. [B29]). This case generally occurs in closed field regions
near the solar equator where the solar coronal plasma is stagnant.

This assumption means that the inner boundary surface acts
like a wall, such that plasma falling from the corona will stag-
nate on the surface. In the simulation, we examined the density
and pressure increase slightly to reach a hydrostatic state. This
is associated with a slight corresponding increase of the hori-
zontal component of the magnetic field due to the precipitation
of the confined plasma at the first phase of the time-relaxation
simulation.

3.3. Boundary Constraint BC3 (BC3a, BC3b, and BC3ab):
Limited Mass Flux and Variable Temperature

and Density at Coronal Hole Regions

Wherever the mass flux exceeds the critical value, NVr >
(NVr)c, NVr is reset to (NVr)c so that the solar wind mass flux
will match the Ulysses measurements (eq. [B34]). Because the

mass flux is fixed at the critical value, the density and temper-
ature will decrease due to the shortage of mass and thermal en-
ergy supplied from the transition region. To express the decrease
of density and temperature, we assume that the polytropic gas is
represented by the surface specific heat ratio, �0 (eq. [B38]). Note
that �0 does not have to be the same as the � appearing in the
basic equations (2)–(5) because the solar wind plasma comes
from outside the computational domain.
We examined four cases with different values of �0. The

first one (hereafter BC3a) is the fixed temperature condition
with � 0 ¼ 1 (eq. [B36]), the second one (hereafter BC3b) is the
fixed density condition � 0 ¼ þ1 (eq. [B37]), and the last two
are made with � 0 ¼ 5/3 and 1.05 as the intermediate choice
between BC3a and BC3b (thus labeled BC3ab and BC3ab0).
Boundary constraint BC3a allows the surface mass density

to change. In this simulation, the plasma density at the coronal
hole base decreases so that the kinetic energy [�(NVr)

2
c /2N ] and

flow speed [(NVr)c/N ] reach equilibrium with the fixed tem-
perature and the given surface magnetic field distribution.
With the constraint BC3b, the temperature in the open-field

regions decreases until the system reaches equilibrium with the
fixed density, mass flux (and thus the radial component of the
plasma flow velocity), and the given surface magnetic field.
Therefore, the simulation results with BC3a (BC3b) can be ex-
pected to have the good contrasts of the density (the tempera-
ture) on the inner boundary surface and in the solar corona.

Fig. 1.—Density contrast, radial component of the plasma flow, and magnetic field lines for heliocentric altitudes from 1.01 to 4.2 R� (top) and to 300 R�
(bottom) obtained with case A (uniform temperature at the base of the coronal hole). The gray scales of (a) and (c) are the ratio to the average at each height to show
the density contrast in the steady solution of the solar wind. The gray scales of (b) and (d) show the radial component of the solar wind flow velocity, Vr . The
magnetic field lines in the simulated steady corona are drawn in (a) and (b), and the initial magnetic field lines are drawn in (i). Only the field lines starting in the
northern hemisphere are drawn for clarity. The field is axisymmetric.
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With the intermediate constraint, BC3ab, contrast of both
temperature and density will be obtained.

4. SIMULATION AND RESULTS

To impose the two-dimensional distribution of the solar sur-
face magnetic field at the minimum phase of solar activity,
we used the dipole and quadrupole components of the solar
magnetic field. We used the synoptic photospheric field from
the Wilcox Solar Observatory (WSO) at Stanford University
(Hoeksema & Scherrer 1986) in 1995 April (Carrington rotation
1894). To avoid prescribing the magnetic field topology of the
open/closed structure, in this study, we used a potential field-

source surface model (Schatten et al. 1969) with the source
surface located at infinity. Therefore, the initial magnetic field
has only the closed structure (see Fig. 1). This initial field strength
was multiplied by the factor of 1.8 that is based on the WSO
calibration analysis by Svalgaard et al. (1978). The analytic so-
lutions of the spherically symmetric steady flow (Parker 1958)
are given as the initial values of the plasma density, %, tem-
perature, T (or gas pressure Pg), and the radial component of
the plasma velocity, Vr. The initial solar surface temperature
and number density are set to be 1.47 MK and 2:0 ;108 cm�3,
respectively. The two transverse components of the initial
plasma velocity, V� and V�, are set to zero. On the solar surface

TABLE 2

The Boundary Constraints for Each Case

Boundary Treatment

Case

(1)

NVr � 0

(2)

0 < NVr < (NVr)c
(3)

NVr � (NVr)c
(4)

Figure

(5)

A........................... BC0 and BC2 BC0 and BC1 BC0 and BC3a (uniform N ) 2

B........................... BC0 and BC2 BC0 and BC1 BC0 and BC3b (uniform T ) 3

O........................... BC0 and BC2 BC0 and BC1 BC0 and BC1 (uniform N and T ) 4

AB........................ BC0 and BC2 BC0 and BC1 BC0 and BC3ab ( linked N and T ) 5

AB0 ....................... BC0 and BC2 BC0 and BC1 BC0 and BC3ab0 ( linked N and T ) 6

Notes.—Columns, from left to right: (1) the case; (2–4) the boundary treatments usedwhen provisionally calculated mass
flux is outgoing, incoming and lower than critical value, or higher than critical value; (5) the corresponding figure number.
The provisional mass flux is calculated with BC1.

Fig. 2.—Latitudinal distributions of the solar wind simulated for case A (BC0, BC1, BC2, and BC3a), where the temperature at the base of the coronal hole is
uniform. Panel (a) shows the mass flux of the simulated solar wind sampled at the measurement positions of the Ulysses (dash-dotted line) and the daily and 27 day
average of the Ulyssesmeasurement (solid and dashed line). Panel (b) shows the radial component of the magnetic field in the same manner. Both Ulysses data and the
simulated solar wind parameters drawn in (a) and (b) are normalized to1AU, assumingNVrr

2 andBrr
2 are preserved. Panels (c) and (d ) show the latitudinal distribution

of the relative density and temperature at various heliocentric distances (1, 2, 4, and 16 R�), which are divided by the average at each heliocentric distance.
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boundary the initial plasma flow is defined as V / B =Br/B
2 so

that the plasma flow is parallel to the magnetic field (eqs. [B22]
and [B23] in Appendix B).

We carried out MHD simulations to examine the new bound-
ary constraints BC3a, BC3b, BC3ab, and BC3ab0 for NVr >
(NVr)c. For reference, the simulation using BC1 for NVr >
(NVr)c was also tested. The simulations with the choices above
are labeled caseA, case B, case AB, caseAB0, and caseO. Table 2
summarizes the boundary constraints used in each choice.

The simulated solar corona and solar wind reach a quasi-
steady state after a time-relaxation MHD simulation of about
200 hr in real time. Figure 1 shows the meridional section views
of the density, flow speed, and magnetic field lines of the steady
solar wind obtained with case A. The total area of the open-field
region is about 13% of the entire solar surface. This simulation
of the solar wind undergoes more rapid expansion of solar
coronal magnetic flux than a purely dipole field because of the
presence of the small bipolar structure at the middle latitude
regions. In the closed field region near the solar equator where
the plasma is stagnant, a small plasma motion remains. How-
ever, the residual flow speed was about 0.01–0.1 km s�1 or less
than 1/10,000 of the local magneto-acoustic wave speed. Thus,
we consider the solar wind solution to be steady state.

Comparison with Ulysses measurements covering a wide
range of heliographic latitude is a good benchmark to check
the latitudinal distribution of the simulated distant solar wind
originating the solar surface on which the boundary treatments
are made. Figures 2, 3, 4, 5, and 6 show the latitudinal distri-
bution of the simulated solar wind. Because the simulations
were done in two dimensions using an axisymmetric solar mag-

netic field, the results represent the features averaged over lon-
gitude. We therefore prepared 27 day averages of Ulysses data
for comparison.
Panel (a) in each figure shows the latitudinal distribution of

the solar wind mass flux sampled at the latitudes of Ulyssesmea-
surements; superimposed are the daily and 27 day average of the
Ulysses data. Panel (b) shows the radial component of the mag-
netic field in the same manner as panel (a). For this comparison,
we used the data set from the Coordinated Heliospheric Obser-
vations (COHO) Web database at NSSDC of NASA. The aver-
ages of these quantities are also tabulated inTable 3. Panels (c) and
(d ) show the relative density and temperature at various helio-
centric distances normalized with the average at each distances.
In the comparison of the mass flux and magnetic field in

panels (a) and (b), good agreement between the simulated and
measured parameters is obtained, especially in the high-latitude
regions when the mass flux is limited in cases A, B, AB, and
AB0 (Figs. 2, 3, 5, and 6). The simulated density and magnetic
field at the low-latitude region also agree well with the 27 day
average of the Ulysses measurement. The agreement of the mass
flux implies that the boundary constraints are capable of ade-
quately controlling mass flux escaping from the Sun and that
some aspects of the latitudinal structure of the solar wind are
adequately obtained with this simulation. In addition, the sim-
ulated uniform magnetic field in the high-latitude regions is
similar in strength to the Ulysses measurements; this also sup-
ports the adequacy of our boundary treatments.
The mass flux obtained with case O (Fig. 4a) is much higher

than that obtained with case A or B. This excess of mass flux
is due to the unlimited mass flux on the inner boundary and is

Fig. 3.—Latitudinal distributions of the solar wind simulated for case B (BC0, BC1, BC2, and BC3b), where the density at the base of the coronal hole is uniform.
Plots are made in a manner identical to Fig. 2.
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Fig. 4.—Latitudinal distributions of the simulated solar for case O (only BC0, BC1, and BC2), where both density and temperature at the base of the coronal hole
are uniform. In this case, the mass flux escaping from the open-field regions is not limited and thus larger. Plots are made in a manner identical to Fig. 2.

Fig. 5.—Latitudinal distributions of the solar wind simulated for case AB (BC0, BC1, BC2, and BC3ab), with solar surface specific heat ratio �0 equal to 5/3.
Plots are made in a manner identical to Fig. 2.



responsible for the formation of the latitudinally wider uniform
solar wind at the polar region than other cases.

Boundary constraints BC3a and BC3b are chosen to pro-
duce significant contrast between the coronal hole and streamer
even when the simulation starts with a uniform plasma dis-
tribution. The temperature and density at the base of the coronal
hole obtained with cases A, B, and others are tabulated in
Table 3. Figure 2c shows the density contrast between the
streamer and coronal hole obtained with case A. The surface
density obtained at the base of the coronal hole is about 5 ;
107 cm�3, and the typical ratios of the simulated density in the

coronal hole to that in the streamer are 1 :4 at 1.01 R�, 1 : 6
at 2 R�, and 1 :8 at 4 R�. Although the density variation with
radial distance may be determined by the conditions on the
solar surface and the coronal acceleration mechanism, the con-
trast obtained with our simulation model is consistent with the
contrast in the solar corona. The density contrasts obtained with
cases B and O (Figs. 3c and 4c) are smaller than that obtained
with case A.
Figure 3d shows the temperature contrast obtained with

case B. The computed contrast in temperature is about 10% of
the average at 1.01 R�. While this computed contrast on the solar

Fig. 6.—Latitudinal distributions of the solar wind simulated for case AB0 (BC0, BC1, BC2, and BC3ab0), with solar surface specific heat ratio �0 equal to 1.05.
Plots are made in a manner identical to Fig. 2.

TABLE 3

Some Quantities of the Simulated Solar Wind

Case

(1)

��1
P

(102)

(2)

NP

(108 cm�3)

(3)

TP
(MK)

(4)

VP

( km s�1)

(5)

NVrh i (1 AU)

(103 km s�1 cm�3)

(6)

BPh i (1 AU)

(nT)

(7)

�0 (Surface)

(8)

Figure

(9)

A................................. 4.15 0.537 �1.47 14.7 2.20 3.22 1.00 2

B................................. 1.27 �2.00 1.29 4.00 1.88 3.06 +1 3

O................................. �1.11 �2.00 �1.47 13.5 5.68 2.76 . . . 4

AB.............................. 1.34 1.87 1.30 4.27 1.90 3.01 5/3 5

AB0 ............................. 2.84 0.82 1.41 9.64 2.06 3.16 1.05 6

Ulysses ....................... 2.34 3.10

Notes.—Columns, from left to right: (1) the case; (2) the ratio of magnetic pressure to gas pressure, ��1
P , in units of 100; (3) the particle number density;

(4) the temperature; (5) the radial component of the flow at the polar region on the solar surface; (6) the average of the mass flux, NVrh i; (7) the magnetic field
strength, BPh i, normalized to 1 AU; (8) � 0, the surface specific heat ratio for the polytrope model used in each choice; (9) the corresponding figure number. The
asterisks ( �) are attached to the numbers that are the same as the initial values. The value of BPh i is calculated by sampling only heliographic latitudes greater than
30�. The numbers in the bottom row are the corresponding parameters calculated using Ulysses data. The numbers in the rightmost column give the figure number
illustrating the simulated latitudinal structures.
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surface (from 1.35 to 1.5 MK) is smaller than that obtained from
the analysis of Ulysses data by Geiss et al. (1995; from 1.1 to
1.7 MK), it can be said that BC3b is capable of retrieving some
temperature distribution at the base of the corona.

Figures 5c, 5d, 6c, and 6d show the contrasts of the solar
coronal plasma obtained with cases AB and AB0. The typical
contrast of the density and temperature at 1.01 R� obtained with
case AB (AB0) are about 1 : 1:2 (1 :2) and 1 : 1:1 (1 : 1:05), re-
spectively. The boundary constraint BC3ab (� 0 ¼ 5/3) is capa-
ble of simultaneously producing a temperature contrast similar
to that obtained with BC3b (� 0 ¼ 1þ) and the substantial con-
trast of the density and the constraint BC3ab0 (� 0 ¼ 1:05) can
simultaneously produce a density contrast comparable with that
obtained with BC3a (� 0 ¼ 1) and substantial temperature con-
trast. The actual solar coronal density and temperature must be
determined by the dynamics of the solar surface and the tran-
sition region. However, agreements obtained with cases A, B,
AB, and AB0 show that unknown mechanisms at the transition
region can be reasonably represented by the polytropic rela-
tionship (eq. [B38]) with � 0 � 1.

5. DISCUSSION

We formulated boundary treatments at the subsonic near-
solar surface that limits solar wind mass flux in an MHD sim-
ulation. The treatments of the solar surface boundary are based
on the concept of the projected normal characteristic method.
Therefore, the boundary parameters are fully compatible with
the outgoing MHD waves and the given constraints. The solar
surface mass flux limit is set so that the mass flux at the distant
regions will match the Ulysses measurements and so that a rea-
sonable contrast of the density and temperature at the corona
will be obtained simultaneously. The axisymmetric dipole plus
quadrupole components of the observed solar surface magnetic
field is given to the two-dimensional version of our simulation
code as the initial and boundary values of the magnetic field, so
that the simulation results will represent the solar wind at the
minimum phase of solar activity. The computed solar wind is
compared with the data from Ulysses made during its first fast-
latitude scan. Good agreement is obtained. At the same time,
good contrasts of the coronal plasma between the coronal hole
and streamer are obtained.

The surface density and temperature are represented with the
polytropic model in the boundary treatment. The solar surface
specific heat ratios, � 0 ¼ 1, 1.05, 5/3, and +1, are tested. These
choices of the boundary constraint can be also used for future
studies. For example, the first one, BC3a, must be useful when
the response of the solar corona to a given temperature at the
base of the corona is examined. With the second one, BC3ab0,
the specific heat ratios in the computational domain (r >
1:01 R�) and on the inner boundary sphere at r ¼ 1:01 R� are

the same and equal to 1.05. Thus, the choice BC3ab0 is the fully
polytropic case. The third one, BC3ab, assumes that there is no
special mechanism at the transition region and that plasma
behaves as the usual adiabatic gas. Therefore, this choice will
be convenient when some mechanism, such as heat conduction
and Alfvén wave decay, is examined. The last one, BC3b, will
be helpful when the balance of the thermal energy at the base of
the corona or the responses of the solar corona to the given
surface density is examined.

The simulations shown in this study were done in two di-
mensions to simulate the global structure of the solar wind in
the solar minimum activity phase. Three-dimensional simula-
tion will be necessary when simulating other phases of the solar
cycle with much more complicated magnetic field structure.
Note that the projected normal characteristic method and the
new feature to limit the solar surface mass flux presented in this
paper can be used in the three-dimensional simulation without
any modification.

The computational cost of the projected normal characteristic
method is greater than using simplified boundary conditions,
such as a fixed boundary condition. However, the computation
is numerically stable, and the solutions obtained near the sub-
Alfvénic boundary have almost no numerical oscillation. This
boundary treatment will be useful for general MHD simulations
if the simulation region is limited by a sub-Alfvénic physical
boundary. In addition, many routines for defining matrices and
eigenvalues of the MHD system are almost identical to those
used in the TVD and MUSCL, and the integration into existing
MHD codes with a linearized Riemann solver will not cost very
much.

The model descriptions of the solar wind in this simulation
study were rather simple. In particular, we have assumed the
polytrope model with the specific heat ratio � ¼ 1:05 in this
study because this is a good model to obtain trans-Alfvénic so-
lar wind flow and it has been used widely in solar wind simu-
lation studies. However, this near-isothermal model generates
a slower solar wind acceleration and thus a slower decrease of
density near the Sun. Therefore, coronal heating and accelera-
tion models, such as Alfvén wave decay and microscaled mag-
netic reconnection, have to be considered for enhancing the
simulation model.

The author wishes to thank NSSDC of NASA for the use of
their publicly available data set of the spacecraft measurement
data of the solar wind distributed at the COHO database. This
work is supported in part by the NSF/CISM project under grant
ATM-0120950, the NASA/MDI project under grant NAS5-
13261, and the DoD/MURI project under grants F005001 and
SA3206.

APPENDIX A

EIGENVALUES OF THE MHD SYSTEM

The directions and speed of theMHDwaves are equal to the eigenvalues of the Jacobian matrix, J ¼ @F/@U. The eight eigenvalues
can be explicitly given in a nondecreasing order, e.g., for the radial direction,

k1 ¼ Vr � VF; r; k2 ¼ Vr � VA; r; k3 ¼ Vr � VS; r; k4 ¼ Vr;

k5 ¼ Vr þ VS; r; k6 ¼ Vr þ VA; r; k7 ¼ Vr þ VF; r; ðA1Þ

MHD SIMULATION OF SOLAR CORONA 489No. 2, 2005



where

Vr; A ¼ jbrj; ðA2Þ

VF; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
a2 þ b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 þ b2)2 � 4a2b2r

q� �s
; ðA3Þ

VS; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
a2 þ b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a2 þ b2)2 � 4a2b2r

q� �s
; ðA4Þ

and

a ¼

ffiffiffiffiffiffiffiffiffi
�
Pg

%

s
; br ¼

Brffiffiffiffiffiffiffiffi
4�%

p ; b2 ¼
B2
r þ B2

� þ B2
�

4�%
: ðA5Þ

The fourth eigenvalue, k4( ¼ Vr), represents the two characteristic waves (the advection of Br and Pg/%
�). The time increment step

�t in equation (16) is determined with the Courant-Friedrichs-Lewy (CFL) condition,

�t ¼ �min
�r

max jkrj
;

r��

max jk�j

� �
; ðA6Þ

where kr and k� represent the characteristic velocities along r and �. In this study, the CFL number � is set to 0.5 for computational
stability.

APPENDIX B

FORMULATION OF SOLAR SURFACE BOUNDARY TREATMENTS

The basic idea of the projected normal characteristic method is that only the information of the outgoing waves should be fully used
in the routine to update the variables on the boundary surface. Therefore, the first step of this method is to formulate suchMHDwaves.

Because the normal vector of the inner boundary surface directs radially, it is convenient to use the vector-matrix form of the MHD
equations (2)–(5),

@U

@t
¼ � @F

@r
þ Sr ¼ � @F

@U

@U

@r
þ Sr ¼ �J

@U

@r
þ Sr; ðB1Þ

where the vector Sr contains the rest of the parts, such as the spatial derivatives with respect to the latitudinal direction and source
terms. In the hyperbolic MHD system, the Jacobian matrix J can be expressed as

J ¼ R+L; ðB2Þ

where R and L are the matrix form of the normalized right and left eigenvectors of J, respectively, which satisfy RL ¼ LR ¼ I,
and + ¼ diag(k1; : : : ; k7). The matrix L used here is almost identical to the one used in TVD and MUSCL routines and is given
as

L ¼

L11 L12 	 	 	 L17

L21 L22 	 	 	 L27

..

. ..
.

L71 L72 	 	 	 L77

2
66664

3
77775 


l1

l2

..

.

l7

2
66664

3
77775; ðB3Þ

with

l1¼
"
 �
L; F ;

� f (� VF; r � �Vr)

2a2%
;
þ� sVS; r��Dr � � f �V�

2a2%
;
þ� sVS; r��Dr � � f �V�

2a2%
;

� sa�� � � f �b�
2a2

ffiffiffi
%

p ;
� sa�� � � f �b�

2a2
ffiffiffi
%

p ;
�� f

2a2%

#
; ðB4Þ
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l2 ¼  �
L; A; 0;�

��Dr

2%
; þ ��Dr

2%
; � ��

2
ffiffiffi
%

p ; þ ��
2

ffiffiffi
%

p ; 0

� �
; ðB5Þ

l3 ¼
"
 �
L; S ;

� s(�VS; r � �Vr)

2a2%
;
�� f VF; r��Dr � � s�V�

2a2%
;
�� f VF; r��Dr � � s�V�

2a2%
;

� � f a�� þ � s�b�
2a2

ffiffiffi
%

p ; � � f a�� þ � s�b�
2a2

ffiffiffi
%

p ;
�� s

2a2%

#
; ðB6Þ

l4 ¼ 1� �v 2

2a2
;
�Vr

a2
;
�V�
a2

;
�V�
a2

;
�B�
a2

;
�B�
a2

;
1� �

a2

� �
; ðB7Þ

l5 ¼
"
 þ
L; S ;

� s(þVS; r � �Vr)

2a2%
;
þ� f VF; r��Dr � � s�V�

2a2%
;
þ� f VF; r��Dr � � s�V�

2a2%
;

� � f a�� þ � s�b�
2a2

ffiffiffi
%

p ; � � f a�� þ � s�b�
2a2

ffiffiffi
%

p ;
�� s

2a2%

#
; ðB8Þ

l6 ¼  þ
L; A; 0; þ

��Dr

2%
; � ��Dr

2%
; � ��

2
ffiffiffi
%

p ; þ ��
2

ffiffiffi
%

p ; 0

� �
; ðB9Þ

l7 ¼
"
 þ
L; F ;

� f (þVF; r � �Vr)

2a2%
;
�� sVS; r��Dr � � f �V�

2a2%
;
�� sVS; r��Dr � � f �V�

2a2%
;

� sa�� � � f �b�
2a2

ffiffiffi
%

p ;
� sa�� � � f �b�

2a2
ffiffiffi
%

p ;
�� f

2a2%

#
: ðB10Þ

The auxiliary variables are

� ¼ � � 1; ðB11Þ

 �
L; A ¼ �Dr(��V� � ��V�)

2%
; ðB12Þ

 �
L; S ¼

� s(�v
2=2� VS; rVr)� � f VF; rDr(��V� þ ��V�)

2a2%
; ðB13Þ

 �
L; F ¼ � f (�v

2=2� VF; rVr) � � sVS; rDr(��V� þ ��V�)

2a2%
; ðB14Þ

and

Dr ¼ sgn Br; � f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � V 2

S; r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
F; r � V 2

S; r

q ; � s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
F; r � a2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
F; r � V 2

S; r

q ; ��; � ¼ B�; �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
� þ B2

�

q : ðB15Þ

By operating the matrix L from the left, equation (B1) becomes

L
@U

@t
¼ L �R+L

@U

@r
þ Sr

� �
¼ �+L

@U

@r
þ LSr: ðB16Þ

The lth row of equation (B16),

Ll1
@

@t
þ kl

@

@r

� �
%þ Ll2

@

@t
þ kl

@

@r

� �
(%Vr)þ : : :þ Ll7

@

@t
þ kl

@

@r

� �
E ¼

X7
m¼1

LlmSr; m; ðB17Þ

is an equation of characteristics representing the MHD wave mode whose velocity with respect to r is equal to kl.
When 0 � Vr � VS; r, three eigenvalues (k1, k2, and k3) are always negative. In this case, we can use only three characteristic

equations (eq. [B17]) with l ¼ 1, 2, and 3, and the other four characteristic equations can be discarded because they represent
incomingMHDwaves and do not have any reasonable information in physics. Hereafter, we will use another form of equation (B17),

Ll1
@%

@t
þ Ll2

@(%Vr)

@t
þ Ll3

@(%V�)

@t
þ Ll4

@(%V�)

@t
þ Ll5

@B�
@t

þ Ll6
@B�
@t

þ Ll7
@E
@t

¼ RHSl; ðB18Þ
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with

RHSl ¼
X7
m¼1

LlmRHSm: ðB19Þ

To determine all seven temporal variations, @%/@t; : : : ; @E/@t, four constraints must be given so that equation (B18) is deter-
minable. In this study, the constraints can be expressed in terms of the relationship among the temporal variations.

B1. COMMON BOUNDARY CONSTRAINT, BC0

The temporal evolution of the magnetic field normal to the boundary surface, @Br/@t, can be separated from the characteristic
system, and therefore it does not appear in equation (B18). In this simulation study where the steady state of the coronal structures
with the specified distribution of the solar surface magnetic field are to be obtained, the fixed condition,

@Br

@t
¼ 0; ðB20Þ

is used. Yeh & Dryer (1985) pointed out that a constraint,

@Br

@t
�:< (V <B)

			
r
¼ 0; ðB21Þ

should be satisfied on the boundary surface so that the sinusoidal condition, :=B ¼ 0, will be preserved. To satisfy equations
(B20) and (B21), we employed simple straightforward conditions:

(:<B)� ¼ V�Br � VrB� ¼ 0; ðB22Þ
(:<B)� ¼ VrB� � V�Br ¼ 0: ðB23Þ

These two yield two constraints expressed in terms of temporal derivatives,

Vr

@B�
@t

þ B�
@Vr

@t
� Br

@V�
@t

¼ 0; Vr

@B�
@t

þ B�
@Vr

@t
� Br

@V�
@t

¼ 0; ðB24Þ

or

%Vr

@B�
@t

þ B�
@(%Vr)

@t
� Br

@(%V�)

@t
¼ 0; %Vr

@B�
@t

þ B�
@(%Vr)

@t
� Br

@(%V�)

@t
¼ 0: ðB25Þ

In this study, three constraints, equations (B20) and (B25), are always employed and labeled BC0. Note that the temporal
variations of B� and B� do not have to be zero and thus the inclination angle of the solar surface magnetic field can vary.

B2. BOUNDARY CONSTRAINT FOR 0 < NVr < (NVr)c, BC1

For the case 0 < NVr < (NVr)c, we assume that the plasma density and pressure do not change:

@%

@t
¼ 0;

@P

@t
¼ 0: ðB26Þ

Then, with equations (B20), (B25), and (B26), the temporal variation of the energy can be written in terms of the temporal
derivatives of other variables:

@E
@t

¼ V =
@(%V)

@t
þ B =

@B

@t

¼ VrB
2

B2
r

@(%Vr)

@t
þ %VrV�

Br

þ B�

� �
@B�
@t

þ %VrV�

Br

þ B�

� �
@B�
@t

: ðB27Þ

Finally, putting equations (B25) and (B27) to equation (B18), we obtain the relationships among the temporal variations @(%Vr)/@t,
@B�/@t, and @B�/@t: �

Ll2 þ Ll3
B�

Br

þ Ll4
B�

Br

þ Ll7
VrB

2

B2
r

�
@(%Vr)

@t

þ Ll3
%Vr

Br

þ Ll5 þ Ll7
%VrV�

Br

þ B�

� �� �
@B�
@t

þ Ll4
%Vr

Br

þ Ll6 þ Ll7
%VrV�

Br

þ B�

� �� �
@B�
@t

¼ RHSl: ðB28Þ
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This is a set of three equations (l ¼ 1, 2, and 3), and the temporal variations of %Vr, B�, and B� are now determinable. The temporal
variations of %V�, %V�, and E are then obtained through equations (B25) and (B27), respectively.

B3. BOUNDARY CONSTRAINTS FOR NVr � 0, BC2

In this case, Vr is reset to zero. The other constraint we choose is the fixed adiabatic enthalpy expressed as

@

@t

Pg

%�

� �
¼ 0: ðB29Þ

Note that this satisfies the advection equation of the adiabatic flow along the radial direction

@

@t
þ Vr

@

@r

� �
Pg

%�

� �
¼ 0; ðB30Þ

with Vr ¼ 0. Because B� and B� are not always zero, equations (B22) and (B23) require V� and V� to be zero. Therefore, we obtain

V ¼ 0;
@V

@t
¼ 0: ðB31Þ

With equations (B20), (B29), and (B31), we obtain the temporal variation of the density expressed in terms of those of other
variables,

@%

@t
¼ � � 1

�

%

Pg

@E
@t

� B�
@B�
@t

� B�
@B�
@t

� �
: ðB32Þ

Finally, we obtain the characteristic equations with three undetermined temporal variations,�
Ll5 �

� � 1

�

%

Pg
B�Ll1

�
@B�
@t

þ
�
Ll6 �

� � 1

�

%

Pg
B�Ll1

�
@B�
@t

þ
�
Ll7 þ

� � 1

�

%

Pg
Ll1

�
@E
@t

¼ RHSl: ðB33Þ

Because this equation set does not contain Br in the denominator, this constraint, BC2, is always used when jBrj/B is smaller than 0.01.

B4. BOUNDARY CONSTRAINTS FOR NVr > (NVr)c, BC3a, BC3b, AND BC3ab

In this case, the number flux flowing through the solar surface is reset to be the critical value (%Vr)c. The limitation is expressed as

%Vr ¼ (%Vr)c;
@(%Vr)

@t
¼ 0: ðB34Þ

This constraint removes the second terms of equation (B25),

%Vr

@B�
@t

� Br

@(%V�)

@t
¼ 0; %Vr

@B�
@t

� Br

@(%V�)

@t
¼ 0: ðB35Þ

As the last constraint to be determined, we choose two simple boundary constraints. The first one is to fix the surface temperature
(BC3a),

@

@t

Pg

%

� �
¼ 0; ðB36Þ

and the other one is to fix the density (BC3b),

@%

@t
¼ 0: ðB37Þ

Note that these two conditions can be regarded as the extreme cases of the polytrope,

@

@t

Pg

%� 0

� �
¼ 0; ðB38Þ

with the surface specific heat ration � 0 ! 1 for BC3a and � 0 ! þ1 for BC3b. Therefore, we can also define the intermediate
choices with � 0 ¼ 5/3 (BC3ab) and � 0 ¼ 1:05 (BC3ab0).
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To build the characteristic equations to be solved for BC3a and BC3ab, we first obtain

@Pg
@t

¼ � 0Pg
%

@%

@t
ðB39Þ

from equation (B38). Then, combining with equations (B20), (B34), and (B35), the temporal variation of the total energy can be
expressed as

@E
@t

¼ V =
@(%V)

@t
� V 2

2

@%

@t
þ 1

� � 1

@Pg
@t

þ B =
@B

@t

¼ %VrV�

Br

@B�
@t

þ %VrV�

Br

@B�
@t

� V 2

2

@%

@t
þ � 0Pg

(� � 1)%

@%

@t
þ B�

@B�
@t

þ B�
@B�
@t

¼ � 0Pg
(� � 1)%

� V 2

2

� �
@%

@t
þ %VrV�

Br

þ B�

� �
@B�
@t

þ %VrV�

Br

þ B�

� �
@B�
@t

: ðB40Þ

With equations (B34), (B35), and (B40), the characteristic equation (B18) finally becomes determinable:

Ll1þ
� 0Pg

(� � 1)%
� V 2

2

� �
Ll7

� 

@%

@t
þ %Vr

Br

Ll3 þ Ll5þ
%VrV�

Br

þ B�

� �
Ll7

� �
@B�
@t

þ %Vr

Br

Ll4 þ Ll6þ
%VrV�

Br

þ B�

� �
Ll7

� �
@B�
@t

¼ RHSl; ðB41Þ

with � 0 ¼ 1 for BC3a, � 0 ¼ 5=3 for BC3ab, and � 0 ¼ 1:05 for BC3ab0. The characteristic equations for BC3b,

%Vr

Br

Ll3 þ Ll5

� �
@B�
@t

þ %Vr

Br

Ll4 þ Ll6

� �
@B�
@t

þ Ll7
@E
@t

¼ RHSl; ðB42Þ

are obtained from equations (B34), (B35), and (B37).
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