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Abstract.  We are developing a time stationary self-consistent 2D MHD model of the solar corona and solar wind that explicitly 
solves the energy equation, using a semi-empirical 2D MHD model of the corona to provide an empirically determined effective 
heat flux qeff (i.e., the term effective means the possible presence of wave contributions). But, as our preliminary results indicate, 
in order to achieve high speed winds over the poles we also need to include the empirically determined effective pressure Peff as 
a constraint in the momentum equation, which means that momentum addition by waves above 2 RS are required to produce 
high speed winds. At present our calculations do not include the Peff constraint. The estimates of Peff and qeff come from the 
semi-empirical 2D MHD model of the solar corona by Sittler and Guhathakurta (1999a,2002) which is based on Mk-III, Skylab 
and Ulysses observations. For future model development we plan to use SOHO LASCO, CDS, EIT, UVCS and Ulysses data as 
constraints for our model calculations. The model by Sittler and Guhathakurta (1999a, 2002) is not a self-consistent calculation.  
The calculations presented here is the first attempt at providing a self-consistent calculation based on empirical constraints. 

 

 

INTRODUCTION 

Modeling of the solar wind in coronal streamers 
was first attempted by Pneuman & Kopp (1971). 
They used an isothermal, steady state solution 
with an iterative technique to calculate the solar 
wind and the magnetic field. The iterative 
technique was expanded to model the steady state 
thermally conductive solar wind flow (e.g., 
Cuperman, Ofman & Dryer 1990; Stewart & 
Bravo, 1997). Time dependent 2D MHD models 
of the solar wind in a streamer have been 
developed by Steinolfson, Suess & Wu (1982), 
Wang et al. (1993), Mikic and Linker (1994), 
Linker and Mikic (1995), Suess et al. (1996), 
Wang et al. (1998). The first three-fluid 2D model 
was developed by Ofman (2000). Most models 
assume polytropic energy equations, or an ad-hoc 
heating function. Chen & Hu (2001) included 
Alfvén waves as the driving force of the wind. 
The stability of a 3-streamer model was 
investigated analytically by Wiegelmann, 

Schindler & Neukirch (2000). Sittler and 
Guhathakurta (1999b) developed a semi-empirical 
steady state model of the solar wind in a multipole 
3-streamer structure, with the model constrained 
by Skylab observations. However, the semi-
empirical model is not a self-consistent 
calculation. Here, we use the time-dependent 2D 
MHD equations and a multipolar initial magnetic 
field to obtain the self-consistent solar wind 
solution in a three-streamer structure. We 
investigate polytropic, ad hoc heating term with 
heat conduction and empirical heating solutions, 
and discuss the implications of the various 
approximations. 

 

2D MHD EQUATIONS AND MODEL 

The normalized resistive MHD equations are 
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where the heat conduction by Spitzer along magnetic 
field lines is 
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Here we note that Spitzer’s heat conduction does not 
apply over the poles beyond 2 RS. We have used 
uniform initial temperature. The density and the 
velocity were initialized by the isothermal Parker’s 
(1963) solar wind. The boundary conditions were open 
at 5 RS, and extrapolated variables with fixed 

0BB
rr

= at r = 1RS. The resolution was 320 X 300, and 
η=10-4. We have investigated three cases for the 
energy equation: (A) Polytropic model with γ=1.05, no 
heat conduction. (B) Heat conduction with ad hoc heat 
input required for the solar wind given by 
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where H0 = 2.0 and λ = 0.7 RS. (C) Effective heat flux 
qeff obtained from the semi-empirical model of Sittler 
and Guhathakurta (1999, 2002) on open field lines 
with the corresponding heat input 

,, B
q

BH eff
effi ∇⋅−=

r
    (9) 

for which we note that the heat conduction is not 
explicitly included in case (C). Sittler and 
Guhathakurta (1999a) have developed a magnetic field 
model given by Equation (19) in that paper which  
uses a multipole expansion for which ηM = 0.282, ηD = 

0.109, and ηQ = 0.108 are ratios of the monopole, 
dipole and quadropole terms relative to the octupole 
term, respectively. Using the radial component of the 
magnetic field at 1 AU they estimate the parameter B0 
= 12 G which is the strength of the octupole term. This 
magnetic field model was used in Equation (9) to 
calculate qeff and Hi,eff for their initial estimate for case 
(C). To eliminate the analytical current sheet that 
reaches r = 1RS, and the disconnected field lines near 
the equator we set ηM=0 in the magnetic field used to 
initialize the self-consistent MHD model. Below we 
present the numerical results for cases (A)-(C). 

Results 

For case (A) we used the following initial parameters: 
γ = 1.05, B0 = 12 G, T0 = 1.6 MK, n0 = 108 cm-3, with 
the resulting normalization VA = 2617 km/s, τA = 
267.4 s . For case (B) we set γ = 5/3, B0 = 12 G, T0 = 
1.4 MK, n0 = 5x108 cm-3, with the resulting 
normalization VA = 1170.6 km/s, τA = 598.0 . The heat 
conduction coefficient was ξ = 1.1-3. Here we will not 
show the solutions for case (A) since they are similar 
to that for case (B), and rather will only show the 
solutions for case (B), while noting differences with 
case (A). 
 
In Figure 1a we show a color display of the plasma 
temperature as a function of radial distance (i.e., 1 ≤ r 
≤ 5) and co-latitude from pole to pole for case (B).  
Color is used to indicate intensity. A similar format is 
used in Figure 1b where we show j2/ρ. Both these 
figures show the presence of three helmet streamers 
and current sheets where in the closed field line 
regions the temperature can exceed 2 MK. When 
compared to case (A) the tops of the helmet streamers 
are similar  and the current intensity within the current 
sheets is greater for case (B) when compared to case 
(A). These self-consistent solutions support the 
predictions by Sittler and Guhathakurta (1999b) that 
there should be three current sheets because the 
octupole term dominates near the Sun. Also, the wind 
speed at 5 RS is 300 km/s for case (B), while for case 
(A) it is 250 km/s. In the model solutions by Sittler 
and Guhathakurta (1999a, 2002) the flow speed 
exceeds 400 km/s over the poles at 5 RS. It is clear that 
these solutions cannot produce high speed winds over 
the poles as observed. Finally, in Figures 2a and 2b we 
show the field line topology and solar wind velocity 
vectors, respectively. It shows the flows are radially 
outward above 2-3 RS for all latitudes. Except for the 
magnetic field these self-consistent solutions do not 
provide realistic solutions for the density, flow 
velocity and plasma temperature.  
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Figure 2. In panel A we show the magnetic field vectors as a function of co-latitude θ in radians and radial distance in solar 
radii. In panel B we show the flow velocity vectors using the same format as in panel A.  
 
For case (C ) we inserted the qeff  from the model by 
Sittler and Guhathakurta (1999a, 2002) into Eq. (9) 
(i.e., semi-empirical heating term) and dropped the  

 
heat conduction term in the energy equation. For case 
(C) we set γ = 5/3, B0 = 12 G, T0 = 1.4 MK, n0 = 5x108 
cm-3, with the resulting normalization VA = 1170.6 

Figure 1. Color intensity maps of plasma temperature in panel A and current density squared divided by the mass density ρ
in panel B. The abscissa is the co-latitude in radians and ordinate in radial distance in solar radii. The temperature is in units 
1.4x106 °K, while j2/ρ is in units 1.7x1017 statamp2/(gm-cm). 

A B 
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km/s, τA=598.0. The normalization for qeff given in 
erg/cm2/s was 1.13x107.  In Figure 3 we show the flow 
speed over the poles and compare it to a Parker 
solution. Inside of 2 RS the flow speed exceeds the 
Parker solution and then drops below the Parker 
solution at greater heights. We believe this result is 
caused by not including momentum addition terms due 
to waves. We feel this will be corrected once Peff is 

used as a constraint in the solutions and will get high 
speed flows over the poles. This should also allow us 
to acquire a semi- empirical estimate of the 
momentum addition due to waves. Finally, the use of 
qeff in the energy equation will tend to over-estimate 
the gas temperature since we are not able to separate 
wave contributions at this time. 

  

 

 

 

 

Figure 3. The flow speed over the poles for case (C ) , 
solid line, in units of VA=1171 km/s. For reference we show 
Parker solution as dash-dot line.  
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