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Summary
• The complex magnetic topology at Mars allows solar wind

(and accelerated) electrons to ionize the nightside
atmosphere in limited regions (cusps) forming a patchyat osp e e ted eg o s (cusps) o g a patc y
nightside ionosphere

• Neutral winds drive ionospheric currents at altitudes where
ions are collisionally coupled to the neutral atmosphere
while electrons are magnetized dynamo region
I h iti i th i h i d ti it l d t• Inhomogeneities in the ionospheric conductivity lead to
polarization electric fields and secondary ionospheric
currents – secondary currents can reinforce original
currents forming electrojets

• The magnetic signatures of electrojets can be measured
f bit d f th ffrom orbit and from the surface



Martian Magnetic Fields and Cusps
• No global magnetic field but strong crustal fields
• Cusps form where radial crustal fields connect to the IMF
 solar wind has access to the atmosphere  ionizationso a d as access to t e at osp e e o at o

• Non-uniform global distribution of cusps and ionization
• Accelerated electrons, ionospheric structure, and aurora

associated with cuspsassociated with cusps

Radial component of B
Probability of observing

loss cones on the nightside



Martian Ionospheric Dynamo

• Ionospheric currents exist where ions are collisional ( <  )• Ionospheric currents exist where ions are collisional (i < in) 
but electrons are magnetized (e > en)  dynamo region

• Crustal magnetic fields alter the ionospheric electrodynamicsg p y

• The altitude of the dynamo is geographically dependent

• Currents vary on the same spatial scales as the crustal fieldsCurrents vary on the same spatial scales as the crustal fields 
do at ionospheric altitudes (~ 100 – 600 km)



Martian Ionospheric Currents
( Filli i t l (2010) I 206(1) 112 119 )(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

Electron spectrogram 
observed by Mars 
Global Surveyor on theGlobal Surveyor on the 
nightside at 400 km
Regions of accelerated 
electrons (at cusps) & 
“voids” of few electrons



Martian Ionospheric Currents
( Filli i t l (2010) I 206(1) 112 119 )(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate
 neutral atmosphere (MTGCM) of Bougher et al. [2009]
 electron transport code of Lummerzheim & Lilensten [1994]p [ ]
 magnetic field model of Cain et al. [2003] (path length)



Martian Ionospheric Currents
( Filli i t l (2010) I 206(1) 112 119 )(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate

3. Compute resulting electron density, ne
 assume photochemical equilibrium i e n (z) = √P(z)/α (z) assume photochemical equilibrium, i.e., ne(z) = √P(z)/αeff(z)
 assume all ions are O2

+, αeff(z) is O2
+ recombination rate

 electron temperature, Te, is equal to measured daytime Te

Computed ne versus 
altitude and latitude

Black lines bound 
dynamo region 
currents coincide withcurrents coincide with 
ionospheric peak



Martian Ionospheric Currents
( Filli i t l (2010) I 206(1) 112 119 )(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate

3. Compute resulting electron density, ne

4. Add external force  neutral winds (uX = 100 m/s northward)



Martian Ionospheric Currents
( Filli i t l (2010) I 206(1) 112 119 )(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate

3. Compute resulting electron density, ne

4. Add external force  neutral winds (uX = 100 m/s northward)

5. From equations of motion, calculate particle velocities, vi,e

–1/ni,e (ni,ekTi,e) + mi,eg + q(E + vi,e × B) – mi,ein,en(vi,e – u) = 0
pressure             gravity  electric  magnetic          collisions with
gradient field field neutralsgradient                             field        field                    neutrals



Martian Ionospheric Currents
( Filli i t l (2010) I 206(1) 112 119 )(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate

3. Compute resulting electron density, ne

4. Add external force  neutral winds (uX = 100 m/s northward)

5. From equations of motion, calculate particle velocities, vi,e

–1/ni,e (ni,ekTi,e) + mi,eg + q(E + vi,e × B) – mi,ein,en(vi,e – u) = 0
pressure             gravity  electric  magnetic          collisions with
gradient field field neutralsgradient                             field        field                    neutrals

* Assume B = BZ and u = uX



Martian Ionospheric Currents
( Filli i t l (2010) I 206(1) 112 119 )(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate

3. Compute resulting electron density, ne

4. Add external force  neutral winds (uX = 100 m/s northward)

5. From equations of motion, calculate particle velocities, vi,e

6. Calculate currents: j = nq(vi – ve)



Martian Ionospheric Currents
X- (north) and Y- (west) 
components of currents 
driven by a uniform y
northward neutral wind; 
uX = +100 m/s

Collisional ions carry 
northward currents, jx
East est c rrents jEast-west currents, jy, 
carried by magnetized 
electrons as they drift 
in the –F × B direction 
where F = Fx = meenux

Wh t b t dWhat about secondary
effects…?



Terrestrial Auroral Electrojets

[from Carlson 
and Egeland, 

1995]

• Particle precipitation (i.e., aurora) can create a channel of 
enhanced ionization and enhanced conductivity σ (region A)enhanced ionization and enhanced conductivity, σ (region A)

• An external force (electric field, E,) drives ionospheric currents
• Collisional ions carry current parallel to E: Pedersen current, jPy p , jP
• Magnetized electrons carry current perpendicular to both E

and B: Hall current, jH
• Currents in region A are stronger due to higher conductivity 

difference in jH leads to charge accumulation at the edges of A



Terrestrial Auroral Electrojets

[from Carlson 
and Egeland, 

1995]

• Charge separation creates a secondary electric field, Ey2, 
which drives secondary Pedersen and Hall currents j and jwhich drives secondary Pedersen and Hall currents, jP2 and jH2

• jP2 partially cancels jH in region A
 current continuity in y-direction across A-C boundary

• jH2 adds to jP enhancing original current  electrojet
• Can an analogous situation occur in the nightside ionosphere 

f M ?of Mars…?



Terrestrial Auroral Electrojets

[from Carlson 
and Egeland, 

1995]

• Charge separation creates a secondary electric field, Ey2, 
which drives secondary Pedersen and Hall currents j and jwhich drives secondary Pedersen and Hall currents, jP2 and jH2

• jP2 partially cancels jH in region A
 current continuity in y-direction across A-C boundary

• jH2 adds to jP enhancing original current  electrojet
• Can an analogous situation occur in the nightside ionosphere 

f M ?of Mars…?
• Yes – in magnetic cusps!



Martian Auroral Electrojets
Variations in spectra of 
precipitating electrons 
 variations in ne

B
e

 variations in σ
 variations in j+  - +  -

+  - +  -
+ +E

Neglecting parallel 
currents, jx must be 
continuous (and small)

+  - +  -

continuous (and small) 

Charge accumulates at 
edges of high σ cusps j j
 creates southward E
E drives secondary 
H ll t j

jY2



jY2



Hall currents, jY2, 
enhancing original jY



Martian Auroral Electrojets
Secondary east-west 
Hall current, jY2, 
calculated assuming jXg jX
continuous and = jXmin

EX = (jX – jXmin)/σP,

jY2 = EXσH ≈ jX σH /σP

Current increase, jY2/jYjY2 jY
jY2/jY ≈ jX/jY σH /σP

≈ [σH /σP]2 [σH /σP]

Factor of ~ 80 increase 
 electrojets
Large jX, large increase



Martian Auroral Electrojets
Secondary east-west 
Hall current, jY2, 
calculated assuming jXg jX
continuous and = jXmin

EX = (jX – jXmin)/σP,

jY2 = EXσH ≈ jX σH /σP

Current increase, jY2/jYjY2 jY
jY2/jY ≈ jX/jY σH /σP

≈ [σH /σP]2electrojets  [σH /σP]

Factor of ~ 80 increase 
 electrojets
Large jX, large increase



Martian Auroral Electrojets
Total current density

jYT = jY + jY2

Solve Biot Savart LawSolve Biot-Savart Law 
to find ΔB due to jYT

Max jYT at -50 & -65°;Max jYT at 50 & 65 ;
max ΔB in region 
between -50 – -65°

at 400 km, ΔB ≈ 10 nT,
Bambient ≈ 100 nT (10%)

1 0 k ΔB 0 Tat 150 km, ΔB ≈ 50 nT,
Bambient ≈ 500 nT (10%)

at surface ΔB ≈ 10 nTat surface, ΔB ≈ 10 nT,
Bambient > 1000 nT (1%)



Variability
• Wind driven electrojets are variable; periodic changes in 

conductivity gradients and neutral wind speed and direction
affect intensity of electrojetsa ect te s ty o e ect ojets

• Diurnal:
• In sunlight conductivity gradients are weaker (solar EUV)In sunlight, conductivity gradients are weaker (solar EUV) 

jX is “more continuous”  weaker electrojets

• Wind patterns change with local time [Bougher et al., 2000] p g [ g , ]
northward winds in southern hemisphere pre-midnight; 
westward wind post-midnight  weaker electrojets

• Seasonal:
• Nightside wind patterns also change with season

northward winds at equinox and southern summer solstice;northward winds at equinox and southern summer solstice; 
eastward winds at northern summer solstice  weaker EJ
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Variability
• Wind driven electrojets are variable; periodic changes in 

conductivity gradients and neutral wind speed and direction
affect intensity of electrojetsa ect te s ty o e ect ojets

• Diurnal:
• In sunlight conductivity gradients are weaker (solar EUV)

Northern Summer Solstice             Equinox            Southern Summer Solstice
In sunlight, conductivity gradients are weaker (solar EUV) 
jX is “more continuous”  weaker electrojets

• Wind patterns change with local time [Bougher et al., 2000] p g [ g , ]
northward winds in southern hemisphere pre-midnight; 
westward wind post-midnight  weaker electrojets

• Seasonal:
• Nightside wind patterns also change with season

northward winds at equinox and southern summer solstice;northward winds at equinox and southern summer solstice; 
eastward winds at northern summer solstice  weaker EJ



Caveats/Assumptions/Simplifications
• Electron transport code does not include magnetic gradients: 

straight field lines with constant magnitude and dip angle
 Bad assumption for anisotropic electrons (Lillis et al., 2009)ad assu pt o o a sot op c e ect o s ( s et a , 009)

• For current calculations, use unrealistic geometry  B = BZ

• Neglect effects of external (magnetospheric) electric fieldsNeglect effects of external (magnetospheric) electric fields

• Ignore (observed) parallel currents: j// ~ 0.5 – 1 μA/m2

[Brain et al., 2006; Halekas et al., 2006][ , ; , ]
j// will decrease – but not nullify – magnitude of electrojets
 3-D current system analogous to Earth’s auroral region

• Currents modify magnetic field (which modify currents…)

• What is needed to more adequately address these problems?
 Geometrically accurate self consistent 3 D model of the Geometrically accurate, self-consistent, 3-D model of the 
electrodynamics of the Martian ionosphere (see Poster 41)
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