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Summary

 The complex magnetic topology at Mars allows solar wind
(and accelerated) electrons to ionize the nightside
atmosphere in limited regions (cusps) forming a patchy
nightside ionosphere

* Neutral winds drive ionospheric currents at altitudes where
lons are collisionally coupled to the neutral atmosphere
while electrons are magnetized - dynamo reqgion

* Inhomogeneities in the ionospheric conductivity lead to

polarization electric fields and secondary ionospheric
currents — secondary currents can reinforce original
currents forming electrojets

 The magnetic signatures of electrojets can be measured
from orbit and from the surface
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Martian Magnetic Fields and Cusps

* No global magnetic field but strong crustal fields

» Cusps form where radial crustal fields connect to the IMF
—> solar wind has access to the atmosphere - ionization

* Non-uniform global distribution of cusps and ionization

» Accelerated electrons, ionospheric structure, and aurora
associated with cusps
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Martian lonospheric Dynamo

strong crustal magnetic fields, open and closed field lines
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* lonospheric currents eX|st where lons are coII|S|onaI (Q < Vi)
but electrons are magnetized (Q2, > v,,) 2 dynamo region

« Crustal magnetic fields alter the ionospheric electrodynamics
 The altitude of the dynamo is geographically dependent

 Currents vary on the same spatial scales as the crustal fields
do at ionospheric altitudes (~ 100 — 600 km)
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Martian lonospheric Currents
(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra
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Martian lonospheric Currents

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)
1. Start with observed electron energy spectra

2. Calculate ionization rate

- neutral atmosphere (MTGCM) of Bougher et al. [2009]

- electron transport code of Lummerzheim & Lilensten [1994]
- magnetic field model of Cain et al. [2003] (path length)



Martian lonospheric Currents
(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate

3. Compute resulting electron density, n,

- assume photochemical equilibrium, i.e., n (z) = VP(z)/a«(2)
—> assume all ions are O,%, a_x(z) is O," recombination rate
—> electron temperature, T, is equal to measured daytime T,

) ey
Electron Density

400 AAAMARRRAAAARARARARARARARRARARERRARARRARE] RARRARAN * “REAN
350 =

~ 300 il

km

< 2501 1
200 E
oA
100 [T TR e — 1 WP

Altitude

50 L . . . .
-10 -20 -30 —40 -50 -60
“Latitude"

17 II 10*

Electron Density (cm™)

-

£ 103

t 102

Computed n, versus
altitude and latitude

Black lines bound
dynamo region -
currents coincide with
lonospheric peak



Martian lonospheric Currents

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)
1. Start with observed electron energy spectra
2. Calculate ionization rate
3. Compute resulting electron density, n,
4. Add external force = neutral winds (uy = 100 m/s northward)



Martian lonospheric Currents

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)
1. Start with observed electron energy spectra

2. Calculate ionization rate
3. Compute resulting electron density, n,
4. Add external force = neutral winds (uy = 100 m/s northward)

5. From equations of motion, calculate particle velocities, v; .

_1/ni,e V(ni,ekTi,e) T mi,eg T CI(E t Vi,e X B) _ rni,evin,en(vi,e _ U) = O
pressure gravity electric magnetic collisions with
gradient field field neutrals



Martian lonospheric Currents
(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra

2. Calculate ionization rate
3. Compute resulting electron density, n,
4. Add external force = neutral winds (uy = 100 m/s northward)

5. From equations of motion, calculate particle velocities, v; .

_1/ni,e V(ni,ekTi,e) T mi,eg T C](E +

pressure gravity electric nragretic
gradient field field neutrals

* Assume B = B, and u = uy

rni,evin,en(vi,e _ U)




Martian lonospheric Currents

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)
1. Start with observed electron energy spectra
2. Calculate ionization rate
3. Compute resulting electron density, n,
4. Add external force = neutral winds (uy = 100 m/s northward)
5. From equations of motion, calculate particle velocities, v; .

6. Calculate currents: | = nq(v; — v,)
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Martian lonospheric Currents

Current Density (j,) due to U, (= 100 m/s)
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Terrestrial Auroral Electrojets

primary:
. j
9 T g, Shes L [from Carlson
iHl —Pe g - and Egeland,
+ '+ + + A 1995]

* Particle precipitation (i.e., aurora) can create a channel of
enhanced ionization and enhanced conductivity, o (region A)

* An external force (electric field, E,) drives ionospheric currents
» Collisional ions carry current parallel to E: Pedersen current, jo

« Magnetized electrons carry current perpendicular to both E
and B: Hall current, j,

 Currents in region A are stronger due to higher conductivity -
difference in j, leads to charge accumulation at the edges of A



Terrestrial Auroral Electrojets

primary: secondary:
alk e
B
B s e L == - =_Y=*3 [from Carlson
iHj —F - E, = E, ! ;‘jp ', and Egeland,
+1+ + & Ad e it i 1995]
C =S

» Charge separation creates a secondary electric field, E,,,
which drives secondary Pedersen and Hall currents, j, and j,

* jp, partially cancels j, in region A
—> current continuity in y-direction across A-C boundary

* ju, adds to j, enhancing original current = electrojet

« Can an analogous situation occur in the nightside ionosphere
of Mars...?



Terrestrial Auroral Electrojets

primary: secondary:
alk e
B
B s e L == - =_Y=*3 [from Carlson
iHj —F - E, = E, ! ;‘jp ', and Egeland,
+1+ + & Ad e it i 1995]
C =S

» Charge separation creates a secondary electric field, E,,,
which drives secondary Pedersen and Hall currents, j, and j,

* jpo partially cancels j,, in region A
—> current continuity in y-direction across A-C boundary

* ju, adds to j, enhancing original current = electrojet

« Can an analogous situation occur in the nightside ionosphere
of Mars...?

* Yes — In magnetic cusps!
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Martian Auroral Electrojets

Current Density (j,) due to U, (= 100 m/s)
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Martian Auroral Electrojets

Current Density (jy,) due to Uy, (= 100 m/s)
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Martian Auroral Electrojets

Current Density (jy,) due to Uy, (= 100 m/s)
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Variability
* Wind driven electrojets are variable; periodic changes in

conductivity gradients and neutral wind speed and direction
affect intensity of electrojets

 Diurnal:

* In sunlight, conductivity gradients are weaker (solar EUV) -
jx I1s “more continuous” - weaker electrojets
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* Wind patterns change with local time [Bougher et al., 2000]
northward winds in southern hemisphere pre-midnight;
westward wind post-midnight - weaker electrojets




Variability
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» Seasonal:

* Nightside wind patterns also change with season
northward winds at equinox and southern summer solstice;
eastward winds at northern summer solstice > weaker EJ



Caveats/Assumptions/Simplifications

 Electron transport code does not include magnetic gradients:
straight field lines with constant magnitude and dip angle
- Bad assumption for anisotropic electrons (Lillis et al., 2009)

* For current calculations, use unrealistic geometry - B = B,
* Neglect effects of external (magnetospheric) electric fields

* Ignore (observed) parallel currents: j, ~ 0.5 — 1 yA/m?
[Brain et al., 2006; Halekas et al., 2006]
j,, will decrease — but not nullify — magnitude of electrojets
- 3-D current system analogous to Earth’s auroral region

 Currents modify magnetic field (which modify currents...)

* What is needed to more adequately address these problems?
- Geometrically accurate, self-consistent, 3-D model of the
electrodynamics of the Martian ionosphere (see Poster 41)
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* Ignore (observed) parallel currents: j, ~ 0.5 — 1 yA/m?
[Brain et al., 2006; Halekas et al., 2006]
j,, will decrease — but not nullify — magnitude of electrojets
- 3-D current system analogous to Earth’s auroral region
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[Brain et al., 2006; Halekas et al., 2006]
j,, will decrease — but not nullify — magnitude of electrojets
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Summary

 The complex magnetic topology at Mars allows solar wind
(and accelerated) electrons to ionize the nightside
atmosphere in limited regions (cusps) forming a patchy
nightside ionosphere

* Neutral winds drive ionospheric currents at altitudes where
lons are collisionally coupled to the neutral atmosphere
while electrons are magnetized - dynamo reqgion

* Inhomogeneities in the ionospheric conductivity lead to

polarization electric fields and secondary ionospheric
currents — secondary currents can reinforce original
currents forming electrojets

 The magnetic signatures of electrojets can be measured
from orbit and from the surface



