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A B S T R A C T

To relate the vertical wind shear to horizontal temperature gradients at and near the equator, we derive an “Equatorial Thermal Wind Equation” (EQTWE) using a
minimum set of assumptions that are easily satisfied for the atmospheres of all the giant planets and Earth. Similar to the textbook Thermal Wind Equation (TWE), the
EQTWE requires a small Rossby number, but the relevant Rossby number for the EQTWE depends on the velocity and length scales of the equatorial flows, and on the
Coriolis parameter at the north pole (which is large), rather than the Coriolis parameter at the equator (which goes to zero). Unlike the TWE, the EQTWE is valid only for the
east-west component of the wind. We apply the EQTWE to the Jovian wind measured by the Galileo probe Doppler wind experiment at jovicentric latitude 6.53°N
(7.46°N jovigraphic), which is valid because the EQTWE is accurate at latitudes θ< 18°. Assuming that this wind profile holds at all longitudes, the EQTWE shows
that near the equator at altitudes at 0.8 bar < P< 5 bar, the atmosphere is anomalously cool with respect to the surrounding flow, and at 5 bar ≤ P< 13 bar, it is
warm. These anomalies imply adiabatic up-welling (down-welling) at 0.8 bar < P< 5 bar (at 5 bar ≤ P≤ 13 bar), which suggests a Jovian global circulation model
with two layers of Hadley cells, with an upper layer like the one on Earth, and the lower has cells with the opposite rotation. Applying the EQTWE to CIRS
temperatures at altitudes above 330 mbar, shows that the large vertical wind shears measured by the Galileo probe extend to higher altitudes, and at 3 mbar create a
stratospheric equatorial jet with a velocity of 205 m/s (almost 50% faster than the speed that had been obtained earlier with the TWE).

1. Introduction and motivation

The Thermal Wind Equation (TWE) (e.g., Pedlosky, 1979 Sections
2.6, 2.9b, and 6.5) relates the vertical shear of the horizontal velocities
to the horizontal gradients of the temperature in a rotating system such
as the atmosphere of a planet. The TWE works well at polar and mid-
latitudes, and sometimes, depending upon the application, at sub-tro-
pical latitudes. However, it is reputed not to work in regions close to the
equator because the Coriolis force is small and the traditional Rossby
numbers are of order unity there (see Section 3.2). Despite this, since
there is plentiful data and interesting phenomena near the equator, the
TWE is frequently applied there. Before dismissing the application of
the TWE near the equator, we note that observations by Allen and
Sherwood (2008) of the east-west component of Earth’s atmospheric
velocities and radiosonde temperature data sets show that the TWE
works “accurately, even in the deep tropics, where the Coriolis force
approaches zero”. This observation suggests that for the east-west
component of the velocity, there either must be a variant of the TWE
that works well at the equator, or that for some unknown reason the
TWE does not require approximate geostrophic balance (which breaks
down at the equator). Therefore, it would be useful to determine the
conditions (if any) for which the TWE is valid close to the equator, and
better yet, to derive a new equation that relates the vertical shear of

horizontal velocities to the horizontal gradients of the temperature that
is valid at and near the equator. In this paper we derive such an
equation, and refer to it as the “Equatorial Thermal Wind Equation”
(EQTWE). We also show the circumstances under which a modified
TWE can sometimes be used at the equator. The EQTWE is not only
accurate at the equator but also in tropical regions at latitudes |θ| ≤ 18°
with only 10% errors.

Our EQTWE has four features, all independent of each other, that
make it practical to use: (1) it does not become invalid when the tra-
ditional Rossby number becomes large (as usually happens near the
equator); (2) it does not cease to produce useful information, i.e., re-
ducing to “zero equals zero”, at the equator as some modified thermal
wind equations do (c.f., de la Torre Juárez et al., 2002); (3) it does not
become ill-conditioned at the equator by requiring the division of one
very small number by another to obtain the shear at the equator; and
(4) it provides a relationship between the horizontal temperature gra-
dient and the vertical shear at the equator, rather than the wind shear
with respect to the axis of rotation (c.f., de la Torre Juárez et al., 2002;
Li et al., 2008; Li et al., 2013). Our EQTWE can not only be used to
study atmospheric dynamics in the equatorial region of the Earth, but
also in major gaseous planets whose equatorial regions are often the
most accessible to observers using ground-based telescopes, the Hubble
Space Telescope, and fly-by satellites. Equatorial regions of the planets
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are rich in interesting dynamical features whose behavior we want to
understand, such as:

• The Jovian vertical wind shear deduced from the Galileo probe Doppler
wind experiment. The probe descended into Jupiter’s atmosphere at
the South edge of a 5 µm hot spot at 7.46°N jovigraphic latitude
(Young, 2003) and measured the zonal winds as a function of alti-
tude (Atkinson et al., 1998). Since geostrophic balance does not hold
at this low-latitude, attempts to explain the data have been made by
making use of a more general gradient wind balance (Showman and
Ingersoll, 1998). To date, however, no model has fully explained the
observed wind shear. We apply our EQTWE to the probe velocities
in Section 3.3.

• The Jovian equatorial stratospheric jet. Flasar et al. (2004) reported an
intense stratospheric equatorial jet at an altitude near 3 mbar, which
they believe is evidence of a 4–5 year quasi-biennial oscillation.
They used the TWE to find jet velocities of 140 m/s, which are
nearly the same magnitude as the largest jet velocities at the visible
Jovian cloud-tops. This finding is somewhat contradictory to that of
Li et al. (2006) who found that the wind shear is negligible between
319 and 499 mbar. However, the TWE was used near 5° and at 3°,
respectively, in these two studies, which is formally too close to the
equator to use the TWE. We apply our EQTWE to the CIRS tem-
peratures in Section 3.2 to re-examine the stratospheric jet.

• Saturn’s equatorial jet. Saturn has a broad and fast equatorial jet,
with a narrow “jet within a jet” showing up between ± 3° latitude,
in data taken in 2004 and later (Garcıa-Melendo et al., 2010). Wind
speeds derived from Cassini ISS, Voyager, and Hubble images differ
with wavelength and over time (Sánchez-Lavega et al., 2016; Porco
et al., 2005). Sánchez-Lavega et al. (2016) disentangled vertical and
temporal trends to summarize the evolution of this complex struc-
ture from the Voyager era to the present day. Saturn’s equatorial
region also experiences a Stratospheric Oscillation, where the winds
and temperature vary periodically (Li et al., 2008). An EQTWE
could elucidate how variations in temperature quantitatively affect
changing shape, vertical structure, and speed of the equatorial
winds. This approach would be particularly valuable in the narrow
high-speed jet, whose position at the equator makes it intractable for
the textbook TWE.

• Neptune’s zonal vertical wind shear. Significant vertical wind shear is
detected in Neptune’s equatorial region throughout the upper at-
mosphere. Vertical wind shear in Neptune’s stratosphere
(120 mbar–30 mbar) was calculated from temperature retrievals
from the infrared interferometer spectrometer (IRIS) on Voyager 2,
showing the winds decreasing in strength with height
(Conrath et al., 1989). Retrievals of vertical wind shear from stellar
occultation measurements found comparable vertical wind shear
values, finding that the winds decayed in magnitude at 0.38 mbar
compared to the 100 mbar velocities following the zonal wind
profile derived from Voyager images (French et al., 1998). Cloud
tracking from Keck/NIRC2 images found that zonal velocity profiles
differed at the equator between filters (Fitzpatrick et al., 2014;
Tollefson et al., 2018). These filters probe different altitudes near
and below the tropopause (1 bar–100 mbar), implying variations of
the zonal flow with depth. The observed vertical wind shear in these
studies is opposite in direction of the stratospheric wind shear and is
inconsistent with the TWE and measured Voyager/IRIS temperature
gradients (Fletcher et al., 2014). Neptune’s rapid equatorial winds at
the cloud tops (300–400 m/s) also mean that geostrophic balance
breaks down there. Tollefson et al. (2018) use the EQTWE, derived
in this paper, to show how temperature variations in latitude along
with meridional variations in methane abundance explain the ob-
served vertical wind shear.

• Jupiter’s deep equatorial ammonia plume. Understanding this plume
(de Pater et al., 2016; Li et al., 2017) and its implications to the
velocities measured by the Galileo probe is important because the

latitude of the probe entry and of the persistent plume are nearly the
same. This is discussed in Section 3.5.

Others, c.f., Flasar et al. (2005) in studying Titan and
Flasar et al. (2004) in studying Jupiter, have noted the breakdown of
the textbook TWE at low latitudes and the utility of having a modified
TWE valid near the equator. de la Torre Juárez et al. (2002) and
Li et al. (2008; 2013) developed a modified TWE valid near the equator
that relates the horizontal variation in the temperature to the derivative
of the zonal flow with respect to the z-axis of a cylindrical coordinate
system, or equivalently the rotation axis of a planet. In contrast, the
textbook TWE and the EQTWE that we develop here relate the hor-
izontal variation in the temperature to the derivative of the zonal flow
with respect to r, the radial coordinate of a spherical coordinate system,
or equivalently the local vertical coordinate of a planet. Near the
equator, the derivative with respect to z is approximately equal to the
derivative with respect to the local north-south coordinate, so the in-
formation in the modified TWE developed by de la Torre Juárez
et al. (2002) (in their Eq. (10)) and by Li et al. (2008; 2013) is literally
orthogonal to the information in the EQTWE. de la Torre Juárez
et al. (2002) also derived a modified thermal wind equation (their
Eq. (12)) which they state can be used at the equator. Unfortunately,
this leads to a modified thermal wind equation that makes the vertical
wind shear zero at the equator (and almost zero near the equator, up to
and including the latitude of the Galileo probe entry), which produces
results inconsistent with observations. (See Section 3.2.)

Andrews et al. (1987) (in their Eq. (8.2.2)) also proposed a modified
thermal wind equation valid at the equator on Earth, but their deri-
vation was not general, and the authors assumed that their modified
thermal wind equation had very limited applicability (see the second
footnote in Section 4.2). Other methods, such as the use of Jupiter’s
gravity moments measured by the on-going Juno mission, can measure
Jupiter’s internal differential rotation (Kaspi et al., 2017; 2018; Guillot
et al., 2018). Unlike the TWE, these measurements can be used to find
the zonal velocity at the equator. However, vertical zonal shears have
not yet been determined with this method, and, in fact, the functional
form of the vertical shear needs to be assumed by Kaspi et al. (2018) and
Guillot et al. (2018) to carry out their calculations.

In the following section, we remind the reader about the assump-
tions used in the standard thermal wind equation, and then summarize
our results, including: the EQTWE, the list of assumptions used in its
derivation, and estimates of fractional errors in the equation in terms of
dimensionless quantities. In Section 3 we apply the EQTWE to Jupiter’s
Galileo probe data to derive a temperature profile (as a function of
depth and latitude) near the equator that we show to be consistent with
a 2-layer cellular global circulation model of the atmosphere near the
equator (Ingersoll et al., 2000; Showman and de Pater, 2005). We also
apply the EQTWE to CIRS temperatures at altitudes of 500 mbar and
above to show that the strong vertical wind shear measured by the
Galileo probe at 0.7 bar continues to altitudes up to 1 mbar. These
findings are in contrast to those found earlier (Li et al., 2006) with the
TWE that showed that the wind shear vanishes at these altitudes. The
qualitative difference between the results of the EQTWE and of the TWE
analysis illustrates the importance of the EQTWE.

We further show with the EQTWE that the Jovian stratospheric
equatorial jet is almost 50% faster than found by Flasar et al. (2004),
whose application of the textbook TWE did not permit them to resolve
the jet peak velocity at the equator and noted that their derived velocity
is a lower bound to the actual jet speed. We also consider the im-
plications of the EQTWE to the equatorial global circulations at the
Jovian equator and compare our results to Juno findings. Our conclu-
sions, in Section 4, include a discussion of the circumstances under
which the textbook TWE is valid at low latitudes: if applied correctly, if
temperature gradients of sufficient accuracy can be obtained, and if the flow
is sufficiently symmetric about the equator. Three Appendices give the
complete derivation of the EQTWE. Because it is generally assumed that
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the TWE can never be used at the equator and that the modified thermal
wind equation of Andrews et al. (1987) can be used only under very
restrictive conditions, we decided that it would be worthwhile to
publish in the Appendices the full, unabridged derivation of the
EQTWE, including its limitations and fractional errors.

2. Summary of the thermal wind equations

The standard textbook TWE (c.f. Pedlosky, 1979, Section 2.9b)
written in terms of spherical coordinates is:

= ×f r
r

g
T

Tv rsin ( , , ) ^ ,
P

0 (1)

where f0 ≡ 2Ω0 is the Coriolis parameter at the north pole (so it is a
constant, rather than a function of latitude θ); Ω0 is the angular velocity
of the planet around its z-axis (using a spherical coordinate system in
which =z r sin , where r is the radius); ϕ is the longitude; v⊥ is the
horizontal (θ and ϕ) component of the velocity; a “hat” means a unit
vector; ∇⊥ is the horizontal component of the gradient operator; T is the
temperature; ρ is the density; P is the pressure; and g is the gravity and
is in the radial direction. On the right side of the equation, we have used
the pressure as the independent vertical coordinate, rather than r, and |p
means to hold P, rather than r, constant when computing derivatives so
that the gradient is along a constant pressure surface.

Assumptions needed for the textbook TWE to be valid are: (i) The
characteristic time over which the flow changes is slow. In particular, a
sufficient (but not necessary) condition for the slowness is that the
characteristic time over which the flow changes is of order or slower
than the advective time (the time it takes for the characteristic velocity
V to travel over the characteristic length L of the flow features). Fast
waves can invalidate this assumption. (ii) Flows are in approximate
vertical hydrostatic equilibrium. (iii) The traditional Rossby number
Ro≡ V/(f0Lsin θ) is small, where θ is the latitude at which the TWE is
applied.

While these seem like straight-forward constraints, they have many
subtleties because there are often different characteristic velocities and
lengths in the east-west, north-south and vertical directions. As pointed
out by Pedlosky (1979) (Sections 2.6, 2.9b, and 6.5), these different
velocities and scales, especially when the aspect ratios of the flows’
features are small (as they are in the Jovian atmosphere), can make the
required conditions of, and the fractional errors in, the TWE more
subtle and complex. Thus, in deriving the EQTWE, we shall not assume
that all length scales are the same nor that all velocity scales are the
same. For this reason, our stated required conditions for the validity of
the EQTWE and its fractional errors appear to be more restrictive and
complicated than those of the textbook TWE, but actually they are not,
as discussed in Section A.3 in Appendix A. A final necessary assumption
for the TWE is that the flow obeys

= +P
P

T
T

,
(2)

or equivalently that = T T(1/ )( / ) (1/ )( / )P P and
= T T(1/ )( / ) (1/ )( / )P P is valid, which holds for an ideal gas

equation with one component or for an ideal gas equation in which the
mixing ratios of the various components do not vary significantly with
location (i.e., that the anomalies in the density of the gas are due to
thermal, rather than computational, anomalies). If this last assumption
does not hold, then replacing the kinetic temperature in the TWE with
the virtual temperature will make the TWE valid (c.f., Sun et al., 1991;
Tollefson et al., 2018, and Appendix C).

Our required assumptions for deriving our EQTWE are:

1. The flow changes on a slow time scale. In particular, the magnitude
of ∂ωϕ/∂t is much less than the magnitude of g r[ /( )]( / ) P0 ,
where ωϕ is the azimuthal component of the vorticity × v,

where v is the fluid velocity, and where r0 is the radius of the planet
where the EQTWE is applied. A sufficient, but not necessary, con-
dition is that the characteristic time over which the flow changes is
longer than the advective timescale.

2. The vertical scale D of the flow is less than r0.
3. The vertical scale D is less than or equal to Lθ, the characteristic

length scale in the north-south direction at the equator.
4. The vertical scale D is less than or equal to Lϕ, the characteristic

length scale in the east-west direction at the equator.
5. The flow obeys Eq. (2).

These assumptions are modest, and easily hold for all of the giant
gas planets since the atmospheric scale height is roughly equal to D and
is much less than the scale of the flow and the radius of the planet. In
addition, as in the TWE, if assumption # 5 in the list enumerated above
does not hold, then the EQTWE is valid if the kinetic temperature is
replaced with the virtual temperature (See Appendix C).

In the Appendices, we derive the EQTWE that relates the vertical
shear of the azimuthal component of the velocity vϕ to the meridional
change of the temperature T with respect to latitude θ. Our EQTWE in
its most general form is:

=g
r T

T f
v
r

,
P0

2

2 0 (3)

where g g f r( cos )/40
2

0 is the effective gravity (i.e., g′ is g minus
the centrifugal acceleration in the radial direction). For Jupiter,
Neptune, and Uranus =g g within 10%, whereas for Saturn the dif-
ference is larger. In Eq. (3), vϕ and T are both averaged over all long-
itudes. Note that the EQTWE applies only to vϕ, the east-west compo-
nent of the wind and states nothing about vθ, the north-south
component, whereas, the textbook TWE applies to both components.

In the Appendices, we derive the fractional errors1 of the EQTWE
and show that they are

O Ro r
L

V
V

r
L

V
V

r
L

D
L

DV
gL

DV
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gL L
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L
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T

v
v
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[ ]

, [ ]
[ ]

, [ ]
[ ]

, 0.0003 ,
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2

2
0 0

2

2

2

2
0

2

2 2 2

0
2

(4)

where Vθ is the characteristic velocity in the north-south direction at
the equator; Vϕ is the characteristic east-west velocity at the equator;
Ro V f L/( )0 and is a modified Rossby number that does not blow up
at the equator because it does not have sinθ in the denominator;
Ro V f r/( )0 0 is another modified Rossby number that does not blow up
at the equator; and θ0 is the latitude (in degrees) where the EQTWE is
applied. In expression (4), the A and M superscripts refer to the spatial
symmetries of the flow. Specifically, the density can be decomposed
into a component that is mirror-symmetric with respect to the equator,

+r r r( , , ) [ ( , , ) ( , , )]/2,M (5)

and a part that is anti-mirror-symmetric,

r r r( , , ) [ ( , , ) ( , , )]/2.A (6)

A similar decomposition holds for the temperature
+T r T r T r( , , ) ( , , ) ( , , )M A and for pressure and the ϕ and r

components of the velocity. For the θ-component of the velocity, we
define the terms oppositely with

v r v r v r( , , ) [ ( , , ) ( , , )]/2,M (7)

and

+v r v r v r( , , ) [ ( , , ) ( , , )]/2.A (8)

1 meaning that the difference between the left and right sides of Eq. (3) are at
most the fractional error multiplied by the left or right side of Eq. (3).
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Fig. 1. Longitudinally-averaged temperatures derived from TEXES (black circles) and CIRS (red triangles) from 1–500 mbar, taken from Fig. 14 in
Fletcher et al. (2016). Gray bars represent retrieval uncertainties. Our analysis in Section 7 uses the CIRS data since it was taken roughly 4 years after the Doppler
Wind Experiment, and would therefore be on the same cycle as the Quasi Quadrennial Oscillation.
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Due to the symmetries of the equations of motion, it is possible that an
equilibrium flow could be perfectly mirror-symmetric with

= =r r T rv0 ( , , ) ( , , ) ( , , )A A A . [TA], [TM], [ρA], [ρM], [vA],
and [vM] are defined as the characteristic values of the anti-mirror-
symmetric and mirror-symmetric components of their corresponding
fields. The giant planets are nearly mirror-symmetric. At and near the
equator, the velocity and thermodynamic variables T and ρ of the at-
mospheres of the gas giant planets are nearly mirror-symmetric with
respect to the equator. For example on Jupiter as Fig. 1 shows, the
average temperature at 500 mbar at the equator is about 140K. There
are latitudinal variations about this average temperature of approxi-
mately ± 5K, but these fluctuations themselves are nearly symmetric
with respect to the equator. Therefore, even if the magnitude of the
temperature fluctuations near the equator increases to ± 20 K at
depths of 10 bar (see Section 3), the characteristic value of the mag-
nitude of TA at the equator, [TA], divided by the characteristic value of
the magnitude of TM at the equator, [TM] is likely to be no greater than
0.05. We would also expect [ρA]/[ρM] and [vA]/[vM] to be less than
0.05 at the equator, so the fractional error due to anti-mirror-symmetric
behavior of the flow (i.e., the last three terms in expression (4) are less
than (0.05)2 or less than 1%.2

Note that none of these fraction errors in expression (4) depend on
the traditional Rossby number or any other term that depends (in-
versely) on the local value of the Coriolis force f≡ f0 sin θ. The fact that
the fractional errors in the EQTWE are independent of the traditional
Rossby number is what allows the EQTWE to be useful at the equator.
All of the terms in expression (4) for the giant gas planets are small as
shown in Table 1.

The EQTWE is also valid a reasonable distance away from the
equator. The derivation of the EQTWE, given in the Appendices, uses a
Taylor series expansion in θ about the equator, and the fractional errors
due to this expansion are O(θ2) (where θ is in radians). Therefore, the
EQTWE is not limited to the equator, but rather, can be applied at a
tropical latitude θ0, leading to the last term in expression (4). For
|θ| < 18°, that fractional error is less than 10%. On the other hand, the
TWE would have a fractional error dependent on 1/sin (θ) > 3 at these
same latitudes due to the dependence on θ in the traditional Rossby
number. Thus, for many applications, the EQTWE is more accurate than
the TWE at latitudes as high as =| | 18 .

The fractional errors in expression (4) appear to be much more
complicated and possibly restrictive than those in the usual TWE.
However, a thorough derivation of the TWE, similar to the one we used
to derive the EQTWE in the Appendices, would yield an expression for
the fractional errors as complex as the one in Eq. (4). If in our analysis
of the errors of the EQTWE, we had assumed that Vϕ (the characteristic
velocity in the east-west direction) is of the same order as Vθ (the
characteristic velocity in the north-south direction) and that Lϕ is of the
same order as Lθ (as done in the standard derivation and analysis of the
TWE), and that [TA]/[TM] ≃ [ρA]/[ρM] ≃ [vA]/[vM], then the fractional
errors in the EQTWE in expression (4) reduce to

O Ro r
L

L
r

DV
gL

Dr
L

T
T

, , , , [ ]
[ ]

, 0.0003 ,
A

M
0

0

2

2
0
2

2

0
2

(9)

Without loss of generality, the EQTWE in Eq. (3) can be written as

=g
r T

T f
v
r

,M

M

P

M

0

2

2 0 (10)

or

=g
r T

T f
v
r

,
P

M M

0

2

2 0
(11)

with the same frame fractional errors as in expression (4), where the
large curly brackets with the superscript M, {}M means “take the mirror-
symmetric component of the quantity within the brackets”. Depending
upon the application, the form in Eqs. (3), (10), or (11) will be the most
useful form of the EQTWE.

In atmospheres in which large changes in the mixing ratios have a
significant impact on the density anomalies, the virtual temperature can
be substituted for the kinetic temperature in Eqs. (3), (10), or (11); or
we can eschew the temperature altogether and write the EQTWE di-
rectly in terms of the density as an “equatorial density wind equation”
or EQDWE:

=g
r

f
v
r

,
P0

2

2 0 (12)

or

=g
r

f
v
r

,M

M

P

M

0

2

2 0 (13)

or

=g
r

f
v
r

,
P

M M

0

2

2 0
(14)

with same fractional errors as in expression (4).
In contrast to our EQTWE, the east-west component of the textbook

TWE in Eq. (1), is:

=g
r T

T f
v
r

1
sin

.
P0

0 (15)

Note the EQTWE depends on the second derivative of T, while the TWE
depends on the first derivative. More importantly, the TWE has a 1/

Table 1
Above the double horizontal lines: estimates of the relevant parameters of
Jupiter, Saturn, Uranus, and Neptune. All values in SI units. Below the double
horizontal lines: most of the dimensionless fractional errors in expression (4) for
the EQTWE in Eq. (3), showing that the EQTWE is accurate to 1% at the equator
for all of the giant gaseous planets.

Parameter and description Jupiter Saturn Uranus Neptune

r0 Equatorial Radius 7.0 × 107 5.8 × 107 2.5 × 107 2.5 × 107

g Gravitational Acceleration 25 10 9 11
Ω0 Angular velocity ×1.7 10 4 ×1.6 10 4 ×1.0 10 4 ×1.1 10 4

D Vertical Length Scale 2.7 × 104 6.0 × 104 2.8 × 104 2.0 × 104

Lϕ Longitudinal Length Scale 108 108 108 108

Lθ Latitudinal Length Scale 107 107 107 107

Vr Characteristic Vertical
Velocity

1–10 1–10 1–100 1–100

Vϕ Characteristic Zonal
Velocity

100 300 100 300

Vθ Characteristic Latitudinal
Velocity

1–10 1–10 1–100 1–100

Ro V f L/( )0 0.03 0.09 0.05 0.14

Ro r L V V( / ) ( / )0 2 0.002 0.0005 0.1 0.04

Ro r L V V( / ) ( / )0 0.002 0.002 0.01 0.01

Ro r L/0 0.02 0.05 0.01 0.04

Ro D L/ ×8 10 5 ×5 10 4 ×1 10 4 ×3 10 4

DV gL/( )2 2 ×1 10 9 ×5 10 8 ×3 10 9 ×2 10 8

DV gL/( )2 2 ×1 10 9 ×6 10 9 ×3 10 7 ×2 10 7

DVθVϕ/(gLϕLθ) ×1 10 9 ×2 10 8 ×3 10 8 ×5 10 8

Dr L/0 2 ×2 10 2 ×3 10 2 ×7 10 3 ×5 10 3

Ro V f r/( )0 0 0.004 0.02 0.02 0.05

2 Even Uranus, with its large obliquity, has small [ρA]/[ρM] and [TA]/[TM]
because the mean density and temperature at the equator are much larger than
their corresponding meridional gradients, ∂ρ/∂θ and ∂T/∂θ, at the equator.
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sin θ term on the right side (making it inapplicable near the equator),
while the EQTWE does not have this dependence on θ. Both the TWE
and EQTWE are approximations and contain many fractional errors, but
only the TWE includes errors that are of order the traditional Rossby
number, and that is worrisome because near the equator the traditional
Rossby number and the fractional errors it creates can be greater than
unity.

3. Application to the Galileo Probe Doppler Wind Experiment and
to the equatorial stratospheric jet

3.1. Assumptions about the velocity field at the 5 µm hot spots

In this section, we shall use the Jovian zonal winds measured by the
Galileo Probe Doppler Wind Experiment in two ways. First, we use the
wind speeds with the EQTWE to determine the temperature as a func-
tion of latitude and altitude at the altitudes where the probe measured
the winds. These altitudes span pressures of 0.7–21 bar where the
temperatures have never been retrieved by remote sensing. Second, we
use the Jovian wind speeds measured by the probe at an altitude near
700 mbar to establish a reference altitude where the value of the zonal
wind at the equator is known precisely. This reference speed is needed
to calculate zonal velocities at the equator from the wind shears cal-
culated with the EQTWE at altitudes spanning 0.7 bar to 1 mbar, well
above the altitudes where the probe measured the zonal winds. Both of
these applications of the probe-measured wind speeds require that we
know the accuracy of the winds at the latitude of the probe entry site.
The Galileo probe descended into Jupiter on December 7, 1995 into the
southern edge of a 5 µm hot spot at 7.46°N jovigraphic and transmitted
data to the orbiter for 57 min before contact was lost. Zonal wind ve-
locities were derived from the probe’s location via the Doppler Wind
Experiment and are shown, with an error envelope, in Fig. 2 (taken
from Fig. 4 in Atkinson et al., 1998).

Understanding properties of hot spots is important in this study
because we need to know if the velocities measured by the Galileo probe
were unique to a hot spot or representative of the average zonal flow
where the probe entered. The probe showed that a hot spot is a dry
region with low molecular weight (Niemann et al., 1998; Wong et al.,
2004). There is no universally accepted and totally self-consistent pic-
ture of what hot spots and dark spots are, but there are strong quali-
tative similarities in several analyses and models of these features
(Allison, 1990; Ortiz et al., 1998; Showman and Dowling, 2000;
Friedson, 2005). Specifically, the cloud patterns and temperature and
density anomalies of the hot spots are created by local, isolated
downdrafts of nonlinear trapped equatorial Rossby waves. In this sce-
nario, the Rossby waves circumscribe the entire planet with wave-
lengths of 2πr0/m, where m is the average number of hot spots
(6 ≤m≤ 13), which can vary as a function of time. This downdraft,
although weak, clears out the upper aerosols that scatter sunlight back
to us, resulting in the signature dark spots at visible wavelengths
(Orton et al., 2017). The relatively aerosol-free, low opacity upper re-
gion allows the warmer low layers to be observable and appear as 5 µm
hot spots. Ortiz et al. (1998) and Friedson (2005) support their scenario
in a number of ways, including showing that the observed numbers of
dark/hot spots are consistent with the theoretical wave numbers of the
Rossby waves and that the observed drift rates of the dark/hot spots are
consistent with the theoretical westward phase speeds of Rossby waves
with respect to the local zonal flow. In addition, the observed varia-
bility of the number of dark/hot spots as a function of time is consistent
with the dispersion relationship of equatorial Rossby waves. Further,
more recent support for this scenario is provided by
Bjoraker et al. (2015), who show, based upon radiative transfer models
that fit Keck observations, that hot spots are dry, and contain no opaque
clouds between 2 and the 7 – 8 bar level. In addition, an analysis of
microwave observations (Sault et al., 2004; de Pater et al., 2016) also
show that hot spots have depleted mixing ratios of ammonia down to

the 8-bar level, similar to Galileo Probe Mass Spectrometer measure-
ments (Wong et al., 2004). The upwelling branch of the wave, displaced
equatorward from the downwelling branch, as simulated by
Showman and Dowling (2000), was shown to be ammonia-rich by
de Pater et al. (2016).

The scenario that the hot spots are due to a Rossby wave is im-
portant in our analysis because the EQTWE relates the vertical wind
shear approximately averaged over all longitudes, rather than at a single
isolated longitude, to the meridional temperature gradient similarly
averaged.3 If the wind shear measured by the Galileo probe were a
peculiarity of a local hot spot and did not represent the long long-
itudinal wavelength component or longitudinal average of the zonal
wind shear, then we could not apply the EQTWE to the probe’s mea-
surements. Note that our analysis uses only the longitudinally-averaged
meridional temperature profiles shown in Fig. 1 and only makes pre-
dictions about longitudinally-averaged temperatures. Whether or not a
hot spot has a thermal or a compositional anomaly compared to the
longitudinally-averaged values is irrelevant to our analyses. Our sce-
nario only assumes that the probe-measured zonal wind shear is

Fig. 2. Zonal wind velocity vs. pressure (solid black line) with an error en-
velope (dashed black line) as measured by the Galileo probe and the Doppler
Wind experiment, taken from Atkinson et al. (1998). At P> 13 bar, the mea-
sured wind shear and its uncertainties are consistent with zero wind shear.

3 This is because the fractional errors in the EQTWE listed in the footnote in
Section 4.1 are small only if Lϕ is of order or larger than r0.
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representative of the longitudinally-averaged values, and this is the
same assumption that Friedson (2005) uses in his model.

Vertical wind profiles in Jupiter are not experimentally known ex-
cept in the probe entry site. Many interpretations of hot spots share our
assumption that wind shear within these features is the same as the
zonal average wind shear (Allison, 1990; Ortiz et al., 1998; Friedson,
2005). One exception is by Showman and Dowling (2000), who argued
that the strong wind shear seen from 1 to 5 bars in the Galileo probe
data was strongly affected by local conditions (such that the wind shear
would have been different had the probe entered elsewhere in the
equatorial region). Application of our EQTWE would be invalid under
these conditions. To test the robustness of the locally anomalous winds
from the Showman and Dowling (2000) model, we measured horizontal
winds in a hot spot observed in 2017. Fig. 3 compares hot spot velo-
cities from Hubble Space Telescope observations (shading in top row)
and infrared images at 4.68 µm from the Gemini North observatory
(bottom row).

The 2D velocity field, extracted with ACCIV4 (Asay-Davis et al.,
2009), is qualitatively similar to the observed velocities from Galileo
Orbiter data shown by Showman and Dowling (2000) in their Fig. 1. In
particular, a large area of clockwise circulation is found to the south
and east of the hot spot, just as in our Fig. 3. However, their model
velocity field shows a clockwise circulation just to the south of the
model hot spot (or about 180° out of phase), which leads them to find
40-m/s winds near the 1-bar level in their simulated probe entry lo-
cation. This is the basis for their hypothesis that vertical wind shear in
the probe region is anomalous. However, since observations differ from
the horizontal velocity field in their model, it is conceivable that their
conclusions regarding the vertical wind profile also differ.

In Fig. 4, we compare mean eastward winds in the region sur-
rounding the hot spot in Fig. 3, spanning 310–345°W, with zonal wind
measurements taken about a year earlier (Tollefson et al., 2017). There
is strong agreement, suggesting that the zonal winds in and around the
hot spot are highly similar to the longitudinally-averaged eastward
flow.

In an analysis subsequent to the publication of Showman et al.’s hot
spot model, Li et al. (2006) used cloud-tracking at two different cloud
decks to measure zonal velocities in and around the spots. Within a hot
spot and at the lower cloud deck at ∼ 3 bar, the zonal winds were
∼ 170 m/s, consistent with the values measured by the Galileo probe.
Li et al. could not measure the zonal velcity within the hot spots at the
altitude of the visible upper cloud decks (due to a lack of cloud tracers),
but they found that the zonal velocity immediately surrounding the hot
spots was ∼ 100 m/s, which is consistent with observed drift rates of
the hot spots themselves (Ortiz et al., 1998; Friedson, 2005). All of
these observations suggest, but do not prove, that the zonal velocities
within the hot spots do not differ from the longitudinally-averaged
zonal velocities at the latitudes at which they are located, and we use
this hypothesis throughout the remainder of this section.

3.2. Equatorial wind shear above 500 mbar and the stratospheric jet

In this Section, we use the EQTWE with CIRS measurements at al-
titudes above 500 mbar to determine the equatorial wind shear and
zonal velocities. The EQTWE can provide the shear, but to determine
the velocity it is necessary to integrate the shear and therefore have a
known reference value of the equatorial velocity at a known altitude.
The Galileo probe provides velocities at known altitudes, but these

velocities are at 7.46°N jovigraphic. Unfortunately, zonal velocity
profiles obtained by cloud displacements, regardless of whether they
use 1D correlation, 2D correlation, or discrete feature tracking (c.f., see
Table 1 in Tollefson et al., 2017), all show that the difference between
the zonal velocity at the equator and at 7.46°N differ by ∼ 30%, or
24 m/s, so we cannot use the Galileo probe velocities to establish a
reference value. Zonal velocities determined by numerous cloud dis-
placement studies (c.f., Tollefson et al., 2017) provide equatorial ve-
locities that are all nearly the same; however, those studies report that
the velocities are at “cloud level”. In principle, the “cloud level” could
be determined, in terms of a specific altitude, by calculating contribu-
tion functions by assuming a model atmosphere and using radiative
transfer models to compute opacities (c.f., Fig. 16 in Tollefson et al.,
2018 which shows contribution functions for Neptune; and
de Pater et al., 2016 which shows contribution functions for Jupiter at
radio wavelengths, where the decrease in NH3 gas signifies the cloud
base, e.g., NH4SH, NH3-ice). However, for Jupiter there is no definitive
altitude of the cloud features used in the derivation of the wind profile,
and estimates vary between 500 mbar (c.f., Flasar et al., 2004) and
1.5 bar (the tops of NH4SH clouds). Therefore to establish the pressure
for “cloud level”, we used an equatorial zonal velocity of 76.7 ± 5 m/s
from the cloud displacement study of Garcıa-Melendo and Sánchez-
Lavega (2001) because that study used images that were taken near the
time of the Galileo probe entry at the “cloud level”. From this same
study, we used the value of 101 ± 10 m/s for the zonal velocity at the
probe entry latitude. The Galileo probe data (Fig. 2) show that a velocity
of 101 m/s corresponds to an altitude of 950 mbar. Using the upper and
lower bounds of the probe velocities shown by the dashed lines in
Fig. 2, we argue that the reference altitude is 950 mbar bounded above
and below by 1.2 bar and 680 mbar. Therefore, we use as a reference
point an equatorial velocity of 76.7 ± 5 m/s at an altitude of
950 ± 250 mbar. The uncertainty in the Galileo probe velocities
dominate the uncertainty in determining the cloud level, so we base our
estimates of the uncertainty of the reference altitude on the uncertainty
that arises from the probe velocity uncertainties in Fig. 2 rather than on
the smaller uncertainties in the velocities obtained from the cloud
displacement study.

In addition to a reference velocity and altitude, to compute the
zonal velocity at the equator, equatorial zonal velocity shears must be
obtained with the EQTWE, which, in turn, requires calculating the
second derivative of the mirror-symmetric component of the tempera-
ture =T P( , )/M2 2

0. We do this with a least-squares fit of the tem-
perature data in each panel of Fig. 1. Near the equator, we fit TM(P, θ)
(which, by definition, is an even function of θ) to a parabola that is
symmetric with respect to = 0, so

= = +T P T P c( , ) ( , 0)M M 2 (16)

= = +
=

T P T P( , 0) ( , )
2

.M
M2

2
0

2

(17)

We emphasize that =c T P( , )/ /2M2 2
0 because the reason for the

least-squares fit is to determine the observed value of
=T P( , )/M2 2

0. To do the least-squares first, we first fold the tem-
perature values T(P, θ) in Fig. 1 about the equator to obtain the values
of TM(P, θ) shown in Fig. 5. The values of the longitudinally-averaged,
mirror-symmetric shears v r/M at the equator are determined from
these temperature fits and the EQTWE in Eq. (10), or in writing the
shear in terms of ln P,

= =
v

P
H

v
z

R
r f

T
ln

,
M M M

P0 0

2

2 (18)

where all quantities in the equation above are to be evaluated at the
equator, and where H≡ RT/g is the local pressure scale height and R is
the specific gas constant for the Jovian atmosphere. The shears are

4 The velocity field used input maps sampled at 0.05°/pixel, with final pass
correlation box sizes of 50 pixels and a search range of 5 pixels. The final pass
was the 4th ACCIV pass with 10-hour separations, following three short-se-
paration (35–45 min) passes, where the first pass used 70-pixel boxes with a
range of 20 pixels, providing sensitivity to any velocities up to a maximum of
440 m/s.
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Fig. 3. Top row: Hubble Space Telescope WFC3/UVIS imaging data from Feb. 1–2, 2017, at 631 nm with wind vectors overlaid. Bottom row: The same wind field is
compared with Gemini infrared image taken at 2017-02-01 UT 16:32. Comparison shows a strong correspondence between optically dark regions and 5 µm bright
regions, as in Orton et al. (2017). Two time steps are shown, based on 10-hour separated data processed using ACCIV (Asay-Davis et al., 2009). Time steps listed at
the top of each column correspond to the midpoint of the 10-hour separated data, which is the time corresponding to the velocity field as measured, rather than the
time of individual observations. Arrows show velocity vectors after the subtraction of a constant eastward velocity of 78 m/s to facilitate a comparison with vectors
plotted in Showman and Dowling (2000). The Gemini data are from a single image, which was advected by a uniform velocity over the whole map area of 108 m/s
eastward to match the time steps of the velocity fields. Gemini data are still under analysis for publication, but a preliminary data frame is shown here to demonstrate
the strong anti-correlation between optical albedo and thermal emission.

Fig. 4. No significant difference is seen between the long-
itudinally-averaged zonal winds from Tollefson et al. (2017)
(black curve), and the mean eastward velocities in the velocity
field in and near the hot spot in Fig. 3 (orange curve). Error bars
show the standard deviation of individual vectors in each bin. A
velocity of 40 m/s at a latitude of 5°N, as given by the model of
Showman and Dowling (2000), is inconsistent at the 4.9-sigma
level with the distribution of observed mean velocities at this la-
titude. At the actual latitude of the probe site, the difference is 3.9
sigm a. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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shown in Fig. 6.5

The zonal mirror-symmetric velocity is determined by integrating
the vertical velocity shears at the equator and is shown in Fig. 7. The
symbols in the figure are the velocities at v P(ln )M

i at P0 (solid squares,
the reference pressure, which is 950 mbar for the black (and 1.2 bar and
680 mbar for the gray curves), each with a velocity of 76.7 m/s),

=P 3301 mbar, =P 2202 mbar, =P 1003 mbar, =P 104 mbar,
=P 55 mbar, =P 26 mbar, and =P 17 mbar. The vertical shears,

d v d P/ (ln ) ,M
i are known at each value of Pi by the EQTWE in Eq. (18)

for 1 ≤ i≤ 7. For =i 0, the shear can be obtained by differentiating the
velocity determined by the Galileo probe (but see the next footnote). To
obtain the values of v P(ln )M

1 from its shear or vertical derivative, we
integrate d v d P/ (ln )M in P(ln ) using the trapezoidal rule, or

+ ++
+

+

v P v P P P d v
d P

d v
d P

(ln ) (ln ) [(ln ) (ln )]
2 (ln ) (ln )

.M
i

M
i

i i
M

Pi

M

Pi

1
1

1 (19)

with =i 0. Because the shears v P(ln )M
i are known for all i, once

v P(ln )M
i has been found, the value of +v P(ln )M

i 1 can be determined.
Using the trapezoidal rule in this fashion, we have computed the values
of v P(ln )M

i and plotted them as open circles in Fig. 7 for i≥ 1. To
compute the continuous curves that connect the open circles in Fig. 7,
rather than use a curve fitting subroutine, we use the trapezoidal rule
for consistency: Eq. (19) is equivalent to finding v P(ln )M

i by drawing
the quadratic curve in P(ln ) that passes through the point
v P P( (ln ), (ln ))M

i i that has slopes d v d P/ (ln )M
Pi

and
+

d v d P/ (ln ) ,M
Pi 1

respectively, at Pln i and +Pln i 1. The value of +v P(ln )M
i 1 in Eq. (19) is the

value of this quadratic curve at +Pln i 1. Each continuous curve in Fig. 7 is
the union of the quadratic curves between +Pln i 1 and Pln i constructed in
this manner. This method of construction makes each curve and its
derivative continuous in P(ln ).6 As mentioned in the footnote following

Eq. (100) at pg. 80, rather than use the EQTWE in Eq. (10), there is an

alternate form of the EQTWE that can be used to evaluate
v

r

M
that does

not have any fractional errors involving [TA]/[TM]:

=
v
r

g
rf T

T
T

T1 ,
M

M

M

P
M

A

P0

2

2

2

(20)

where all quantities and their derivatives are computed at the equator.
In principle, the quantities on the right side of Eq. (20) can be de-
termined from the temperature in Fig. 1. Curve-fitting the data with
parabolas that are not constrained to be symmetric yield values of TM

and TM2
2 such that the values are much larger than their uncertainties.

However, curve-fitting does not give reliable values of T A
at the

equator because the values of these terms are smaller than their un-
certainties. Therefore, it is better to use the EQTWE in Eq. (10), forego
the seemingly more accurate Eq. (20), and accept the fact that Eq. (10)
has a fractional error of order {[TA]/[TM]}2.

Figs. 6 and 7 show that the vertical wind shear remains at the large
negative value that was measured by the Galileo probe at =P 685 mbar
up to altitudes of P ≃ 200 mbar and then becomes positive at a value of
P between 10 and 100 mbar (i.e., just above the tropopause, in the
stratosphere), and changes sign and becomes negative again at P be-
tween 2 and 5 mbar. In fact, because the EQTWE in Eq. (10) shows that
the wind shear is directly proportional to ∂2T/∂θ2, these comments
about the wind shear above 500 mbar are obvious by a casual inspec-
tion of Fig. 1.

The stratospheric equatorial jet shown in Fig. 7 is centered near an
altitude of 3 mbar and has a vertical thickness of ∼ 20 km. According
to Figs. 1 and 5, it has a meridional width of ∼ 20° or ∼ 25,000 km. It
has a maximum eastward-going velocity of ∼ 205 ± 15 m/s. To un-
derstand our estimate of the uncertainty of the jet speed, note that the
uncertainty in the altitude of the reference altitude at “cloud level” has
an effect on the velocity because the velocity is an integral of the zonal
shear that starts at the reference velocity and altitude. A change in the
reference velocity of ± 5 m/s will simply shift the zonal velocity
plotted in Fig. 7 by ± 5 m/s. A change in the reference altitude by
± 250 m/s will have a bigger effect. The two thin gray curves in Fig. 7
show the effects of changing the reference altitude from 950 mbar to
1.2 bar and 680 mbar (the lower and upper limits on the cloud level
altitude as determined from the uncertainty in the Galileo probe velo-
city measurements), respectively, while keeping the “cloud level” zonal

5 The fractional errors in the shear are equal to the fraction errors in de-
termination of

=

TM

P

2
2

, 0
. Using the absolute error bars of any individual tem-

perature measurement in Fig. 1 would make a derivative or a second derivative
of the temperature have errors of order unity. However, taking the temperature
measurements as a group, we argue that fitting a parabola through them gives a
quantitatively significant way of determining second derivative of the tem-
perature. Estimating the uncertainty in the second derivative cannot be de-
termined by examining the distance between the observational points (squares
and circles) in Fig. 5 and the best-fit parabola because all of the observational
points are either in the northern or southern hemisphere. Therefore, none of
those points will lie on the curve of TM(P, θ) for fixed P, so even if the best-fit
parabola exactly represented TM, the observational points would not lie on the
parabola (unless TA ≡ 0). One possible estimate of the uncertainty could be
made by varying the range in θ over which a parabola is fit. Changing the range
from |θ| ≤ 5° to |θ| ≤ 10° in panels a–g in Fig. 1, fractionally changed the
values of ∂2TM/∂θ2 by 20%. However, we believe that the range |θ| ≤ 5° has too
few points to carry out a proper best-fit, and therefore we think that 20% se-
verely overestimates the fractional error of ∂2TM/∂θ2. Many studies have used
temperatures with the TWE to estimate velocity shears. Unfortunately, neither
the algorithms for computing ∂TM/∂θ nor their uncertainties are typically
published, so we have no way of comparing our fractional errors to those of
previous studies. For panel h in Fig. 1, varying the range of θ made a very large
change in the value of ∂2TM/∂θ2. Therefore, we chose not to use temperatures at
500 mbar to compute the velocity shear or the velocity. (See the next footnote
in this section.) Possibly, the measurements at 500 mbar have a large un-
certainty due to aerosol effects on the spectrum at this altitude.

6 As discussed in the first footnote in Section 3.2, the temperatures at
500 mbar (the lowest altitude at which the CIRS temperatures were reported by
Fletcher et al., 2016) were considered to be too noisy to use. Therefore, we
decided not to use the temperatures and the shear determined from them using
the EQTWE at 500 mbar. The value of vM plotted at 500 mbar in Fig. 7 with the
open square is the value at 500 mbar of the quadratic curve connecting P(ln )0
(the solid square) and P(ln )1 at 330 mbar that was constructed with the tra-
pezoidal rule. The value of the shear that we plotted with an open square in
Fig. 6 at 500 mbar is “reverse engineered”; it is the value of the derivative of the
quadratic curve connecting P(ln )0 and P(ln )1 in Fig. 7 that was constructed with

(footnote continued)
the trapezoidal rule. We used this shear value at 500 mbar with the EQTWE
(and the value of = =T P( 500 mbar, 0) in panel h, Fig. 1) to determine the
value of = =T P( , )/M P

2 2
500 mbar, 0. We then used this value of the tempera-

ture’s second derivative and the value of = =T P( 500 mbar, 0) in panel h,
Fig. 1 to create, or “reverse-engineer”, a new parabola (symmetric about the
equator as in Eq. (17)). This reverse-engineered parabola is shown in panel h,
Fig. 5. This parabola does a good job fitting the two temperature values nearest
the equator, but does a poor job far from the equator. Perhaps this is not a
surprising finding considering the noisy data and the fact that the parabolic
approximation of the temperature profile is only valid close to the equator.
Finally, we note that we might have been incautious in determining the value of
the vertical shear of vM at the equator by using the Galileo probe data because
the latter was taken at jovicentric latitude 6.53°N (7.46°N jovigraphic), rather
than = 0. To check the validity of estimate of the vertical shear at the equator,
we constructed a new quadratic curve as a function of P(ln ) for vM at the
equator by connecting data at P(ln ),0 P(ln ),1 and P(ln )2 such that vM at P(ln )0 is
76.7 m/s, and the vertical shear at P(ln )1 and P(ln )2 are the values of the
vertical shear determined from the temperature by the EQTWE. This quadratic
curve in P(ln ) is nearly indistinguishable from the curve plotted in Fig. 7. The
closeness of these two curves shows that at cloud level, the vertical shear of the
azimuthal velocity at the equator at and at jovicentric latitude 6.53°N are nearly
the same, despite the fact that the azimuthal velocity itself differs substantially
at these two latitudes. See Fig. 9.

P.S. Marcus, et al. Icarus 322 (2019) xxx–xxx

9



Fig. 5. Least-squares fits (solid line) to the temperature data in Fig. 1 with a parabola symmetric about the equator. The data in Fig. 1 are folded about the equator to
provide the mirror-symmetric component of temperature TM. Solid black circles (open red squares) are the temperature data in the northern (southern) hemisphere.
The fits only use the temperatures at latitudes |θ| ≤ 10° jovigraphic to assure a local fit to the equator. As explained in the text, the parabola in panel h is not
determined from a least-squares fit, but rather, “reverse-engineered” from the shear at 500 mbar.
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fixed at 77 m/s. Lowering the reference altitude increases the maximum
velocity of the stratospheric jet. The uncertainty of the stratospheric jet
speed, ± 15 m/s is based on the uncertainty in the reference altitude,
which is larger than the uncertainty in the jet speed due to the un-
certainties in the reference velocity. (Here, we do not consider the effect
of the uncertainties in the zonal wind shears obtained via the EQTWE
due to the difficulty in obtaining a reliable measure of the uncertainties
in ∂2TM/∂θ2).

3.3. Application of the EQTWE to the Galileo probe

Little is known about the temperature profiles at altitudes below
700 mbar, because infrared temperature measurements cannot typi-
cally be done at theses depths. Thus, we wish to use the EQTWE to
determine the meridional temperature profile at the depths where the
Galileo probe took measurements (0.7–21 bar). Using the EQTWE in
Eq. (10) to express the second derivative ∂2TM/∂θ2 in terms of the zonal
shear P v r( ) /M at the equator, which is defined to be the long-
itudinal average of =v r/ ,M

0 and approximating TM(P, θ) as a para-
bola symmetric about the equator, as in Eq. (17), then near the equator:

=T P T P r f g( , ) ( , 0) [1 /(2 ) ].M
0 0

2 (21)

Note that T(P, 0) ≡ TM(P, 0). Fig. 1 shows by direct observation that at
altitudes corresponding to P≤ 500 mbar, that there are local extrema
of TM at the equator, so σ≠ 0. A convenient way to express the mag-
nitudes of these extrema is Fig. 8, which shows

T P T P T P T P( ) [ ( , 0) ( , ¯)]/ ( , 0),M where ¯ is a reference latitude
that we set to 7.46° jovigraphic. From Eqs. (17) and (21), we see that
ΔT(p) and the equatorial zonal shear σ and =dv d P/ ln 0 are related by :

= = =T P r f g
r f
g

dv
d P H

r f
R T P

dv
d P

( ) ¯ /(2 )
¯
2 (ln )

1 ¯
2 ( , 0) ln

.2
0 0

2
0 0

2
0 0

(22)

Using Eq. (22), we obtain values of ΔT(P) from values of =dv d P/ ln ,0
where the latter are obtained by differentiating the zonal velocity in
Fig. 2.

From the Galileo probe we have values of the shear at 7.46°N, rather
than at the equator where the EQTWE requires them. Although the
zonal velocities at 7.46°N and the equator are quite different, Fig. 9,
which is a blow up of Fig. 7 near the reference altitude of 950 mbar,
shows that the values of the zonal velocity shear at 7.46°N and the
equator are quite similar (differing by less than 2%). In particular, at
950 mbar, the value of the vertical shear at 7.46°N (as determined by
differentiating the Galileo probe velocity) gives a shear value for ∂vϕ/
∂ln P of 44.5 m/s per ln P, or equivalently, a shear value for ∂vϕ/∂r of
−1.91 (m/s)/km. At 950 mbar, the value of the vertical shear at the
equator (as determined with the temperature observations at the
equator and the EQTWE) gives a shear value for v P/ ln of 43.8m/
s per ln P, or equivalently, a shear value for ∂vϕ/∂r of −1.88 (m/s)/km.
It is this observation at 950 mbar and our assumption that v P/ lnM

remains approximately independent of latitude down to altitudes of
∼ 13 bar, that we justify our use of the shear from the Galileo probe in
the EQTWE.

To determine the vertical shear at 950 mbar at the equator from the
EQTWE and the temperatures in Fig. 1, we did the following: because
we did not feel that we had reliable temperature information at the
equator for altitudes lower that 330 mbar, we used the EQTWE at
220 mbar and at 330 mbar to determine the shear at the equator, and
then extrapolated these values to 950 mbar. We did the extrapolation
by assuming that the zonal velocity was a parabolic function of the
pressure (n.b., this assumption that the velocity is parabolic in altitude
has no relationship with the fact that we assumed that TM was locally
parabolic in θ, other than a fact that that a parabola is the first three
terms of a Taylor expansion). The parabola is uniquely determined by
requiring that its derivatives (or velocity shears) at 220 and 330 mbar
are equal to the values that we derived from the EQTWE (as shown in

Fig. 6. The velocity shear v P H v r/ ln /M M as a function of altitude,
where H is the vertical pressure scale height, approximately 27 km at 1 bar. The
open circles are the values of the shear at the equator obtained from the EQTWE
applied to the temperatures in panels a–g in Fig. 5. The open square at
500 mbar is its “reverse-engineered” shear value at the equator described in the
text. The thin line through the open circles and square is to “guide the eye”. The
shear shown by the thick curve is the vertical derivative of the zonal velocity
from the Galileo probe shown in Fig. 2 at latitude 7.46°N (jovigraphic). There is
no physical reason why the thick and the thin curves should smoothly join
together because they are at different latitudes; however, as discussed in the
text, it appears that the vertical shears of the zonal velocities may be nearly
independent of latitude. The top altitude shown in the thick curve is the “re-
ference altitude” defined in the text.

Fig. 7. The thin black curve shows the zonal velocity vM derived with the
EQTWE at the equator and by integrating the shear from Fig. 6 as a function of
altitude. The thick black curve below 700 mbar shows the zonal velocity from
the Galileo probe in Fig. 2 at a jovigraphic latitude 7.46° N, rather that at the
equator. The open black square and open black circles are at the same altitudes
as they are in Fig. 6, and the slope of the thin black curve at each open circle is
equal to the shear at the corresponding open circle in Fig. 6. The black solid
square at 950 mbar is at the reference altitude or “cloud level” (see text), and its
value was set equal to the zonal velocity that was determined from cloud dis-
placements (Garcıa-Melendo and Sánchez-Lavega, 2001) at the “cloud level”.
The thin continuous curve that connects the black symbols and the open black
symbols themselves were computed by integrating the velocity shears with the
trapezoidal rule (see text). The gray curves, open circles, open square, and solid
square plotted to the right and left of their black counterparts correspond to the
same values as their black counterparts, with the exception that the reference
altitude for the “cloud level” is 680 mbar or 1.2 bar. The stratospheric jet near
3 mbar has a peak westward velocity of ∼ 205 m/s when the cloud level is set
to 950 mbar. In general, the velocity of the stratospheric jet increases with
decreasing altitude of the cloud level reference altitude.
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Fig. 6), and that the velocity at 950 mbar is the one we chose for the
reference altitude (as shown in Fig. 7). Differentiating this parabola at
950 mbar gives our value for the extrapolated vertical shear at
950 mbar at the equator from the EQTWE. Throughout the remainder of
this section, we make the approximation that the shear at the equator is
the value of the shear measured by the probe.

The uncertainties in ΔT are due to the fractional errors in the ver-
tical shear of the Galileo probe velocity and due to our assumption that
the shear at the equator and 7.46°N are the same. We note that the
blow-up of the probe velocity in Fig. 9 shows a “hook” near 900 mbar.
The difference in the velocities given by the thick curve with the hook
and a new curve that is a straight extrapolation (the dot-dash line that
removes the “hook”) of the curve at altitudes above 1 bar is small.7 A
straight extrapolation falls well within the uncertainties in the figures.
However, the difference in the slope between the hooked curve and the
straight extrapolation is large between 680 mbar and 1 bar, and this
difference in slope creates factor-of-2 differences in the shear ∂vϕ/∂r of
the hooked curve and the straight extrapolation (and, therefore in ΔT)
at those altitudes. The small hook in the probe velocity’s shear in Fig. 9
near 900 mbar may be nonphysical.8 Therefore, the kink in Fig. 8 at
altitudes between 680 mbar and 1 bar may also be nonphysical. If we
use the wind shear from the dot-dash curve (extrapolation), rather than
the thick continuous curve (actual Galileo probe measurements), in
Fig. 9 at altitudes between 500 and 1.5 bar in the EQTWE to determine
ΔT, (i.e., use the far right side of Eq. (22) to compute ΔT, where the
value of dv d P/ ln is fixed at its value at 1 bar and where we use the
temperature profile given by Seiff et al. (1998) for T(P)), then the
“kink” in Fig. 8 is replaced by a nearly straight line.

3.4. Implications of the EQTWE-derived temperatures

Fig. 8 shows that altitudes between 1 and 5 bar, the equator is cool
compared to the North and South Equatorial Belts, consistent with the
temperatures at 500 mbar shown in panel h in Fig. 1. This anomalously
cool region in a stably stratified atmosphere9 is indicative of up-welling
at the equator if the air rises adiabatically and therefore cools. Because
the temperature extrema at the equator were derived from zonal shears
that we assumed were representative of the winds at all longitudes, we
envision that this up-welling is nearly axisymmetric around the planet
and not confined to a compact location and that the up-welling is part
of a larger atmospheric circulation that is also nearly axisymmetric
around the planet. The formation of clouds all along the equator is also
indicative of an equatorial up-welling along a moist adiabat that cir-
cumscribes the planet. On Jupiter, clouds are expected to form at least
three decks: a water cloud at 5–7 bar, NH4SH clouds at 1.5–2.5 bar, and
ammonia clouds above 1 bar (Lewis, 1969; Atreya and Romani, 1985;
Wong et al., 2015). In this picture of cloud formation, after up-welling
at the equator, the air, now depleted of its condensibles, travels pole-
ward and sinks, adiabatically warming. This picture of equatorial up-
welling and cooling is also consistent with pictures of the Jovian zone-
belt system dating back to at least 1969: rising motion at the central
latitude of each nearly axisymmetric zone that extends all the way
around the planet, and sinking motion at the central latitude of each
belt (Ingersoll and Cuzzi, 1969; Barcilon and Gierasch, 1970). This

picture, as shown schematically by the upper two cells in Fig. 10, ap-
plies to Jupiter’s equator, which has anticyclonic vorticity for |θ| < 10°,
and is therefore a zone with the equator as its central latitude. This
upper layer of cells looks similar to Earth’s equatorial Hadley cells. This

Fig. 8. The difference T T P T P T P[ ( , 0) ( , 7. 5 )]/ ( , 0)M between the
equatorial temperature and the temperature at 7.5° jovigraphic, normalized by
the value of temperature at the equator as a function of P. The thick curve
shows values determined by the EQTWE using the zonal wind from the Galileo
probe. The equator is cool compared to its surrounding latitudes with ΔT(P) < 0
at altitudes between 1 and 5 bar; however, the equator is relatively warm with
ΔT(P) > 0 at altitudes between 5 and 13 bar. The open circles are values of
ΔT(P) found by fitting the symmetric component TM(P, θ) of observed CIRS
temperatures in Fig. 1 with a parabola that is symmetric about the equator. The
open square at 500 mbar is “reverse engineered” as described in the footnote in
Section 3.2. The thin curve through the open circles, open square, and con-
necting to the thick curve is to “guide the eye”. As explained in the text, the
“kink” in the temperature between ∼ 500 mbar and 1.5 bar may be non-
physical due to uncertainties in the values of the Galileo probe wind shear. As
explained in the text at the end of Section 3.3, replacing those wind shear values
with a straight-line extrapolation of the wind shear at 1.5 bar would change the
“kink” to the dot-dash line between ∼ 500 mbar and 1.5 bar.

Fig. 9. Blow up of the lower part of Fig. 7 that is based on the reference altitude
of 950 mbar. The zonal velocity vM at the equator (thin continuous curve) is
obtained from the EQTWE and the temperatures in Fig. 1. This part of the curve
is extrapolated down to the 950 mbar altitude using the velocity shear values at
220 and 330 mbar as described in the text. The thick curve is the zonal velocity
from the Galileo probe at 7.46°N jovigraphic. The thick dashed lines on either
side of the thick curve are the dashed lines showing the probe velocity un-
certainty in Fig. 2. As described in the text, we are concerned that the “hook” in
the Galileo probe velocity at altitudes above 1 bar may be erroneous. The thin
dot-dash line shown at altitudes above 1 bar would be the Galileo probe velocity
if we replaced the “hook” with a straight-line extrapolation of the probe velo-
city at altitudes just below 1 bar. Although the zonal velocity at the equator and
7.46°N at 950 mbar differ, the vertical shears differ by less than 2%.

7 Replacing the hooked curve with the straight-line extrapolation would make
a negligible difference in the determination of the reference velocity.

8 We have called into question the accuracy of the experimental velocity
measurements of the Galileo probe at the highest altitudes where the mea-
surements were reported. We have also called into question the accuracy of the
experimental temperature measurements at the lowest altitudes where they
were reported. As pointed out by Feynman and Leighton (1986), experimental
data at the extreme ends of the range over which data is reported should be
treated with caution.

9 We argue that the atmosphere at these altitudes is stably stratified, based, in
part, by the findings of Magalhães et al. (2002).
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picture of rising gas in the equatorial zone (EZ) and sinking in the north
equatorial belt (NEB) was recently given credence by microwave maps
constructed using the Very Large Array (de Pater et al., 2016), which
showed bands, encircling the entire planet, of ammonia rising from
deep levels (altitudes below ∼ 8 bar) up to cloud condensation levels
(altitudes between 0.7 and 2.5 bar) in the EZ, a few degrees north of the
equator, accompanied by descending ammonia-depleted air in the belts,
in particular the NEB. Recent Juno observations of an ammonia plume
(Li et al., 2017) just north of the equator during perijove passes PJ1 and
PJ3 are consistent with our model in Fig. 10 as discussed below in
Section 3.5.

At altitudes between 5 bar and 13 bar, the temperature anomalies in
Fig. 8 show that the equator is relatively warm with respect to the
surrounding air and therefore implies a circulation that is opposite to
the one at altitudes above 5 bar and is illustrated by the lower layer of
cells in Fig. 10. A 2-layer cellular circulation like the one in Fig. 10 was
proposed earlier by Ingersoll et al. (2000). Showman and de
Pater (2005) also suggested a similar scenario to explain the overall
ammonia abundance depletion at altitudes above ∼ 2 bar and between
belts and zones.

Our meridional temperature gradient has strong quantitative simi-
larities to one case considered in Showman and Ingersoll (1998). That
work attempted to use a more general, gradient-wind balance, produ-
cing estimates of the meridional temperature gradient at the Probe
entry site based on the probe wind data. Gradient wind balance in-
cludes a centripetal force that depends on the curvature of the flow, R.
For zonal flow, (i.e., R→ ∞), Showman and Ingersoll (1998) found the
equator to be cooler than the probe site at altitudes above 5 bar, and
warmer than the probe site at deeper levels near 10 bar. Magnitudes of
the meridional temperature gradients for their zero-curvature flow case
are very similar to the gradients in our Fig. 8, although we find the
strongest gradient near 300 mbar and Showman and Ingersoll (1998)
found the strongest gradient closer to 1.5 bar.

A final note about our use of the EQTWE in this section is that we
assume that the Jovian atmosphere has a horizontally homogeneous
molecular weight. By doing so, we ignore the effects of the density
variations of ammonia, hydrogen sulfide, water and, other trace gases
in the atmosphere, which lead to departures from Eq. (2) and the
EQTWE. The density variation of an atmosphere due to a tracer with

non-spatially uniform mixing ratio, and its contribution to the vertical
wind shear are accounted for by the second term on the right side of
Eq. (142) in Appendix C. This term can have a large effect on the
vertical wind shear. For example, Tollefson et al. (2018) found in some
applications to Neptune’s atmosphere that the sign of the wind shear
predicted by the TWE and EQTWE changes when compositional
anomalies are properly accounted for. However, we believe that the
compositional structure of Neptune differs from that of Jupiter with the
latter having much smaller volatile mixing ratios so that the composi-
tional effect on the vertical wind shear of Jupiter is at most a few
percent of the thermal effect. To see this, note that we assume that the
spatial non-uniformity of the mixing ratios of the trace gases are in-
dicated by the difference between the mixing ratios at the NEB and at
the equator in Fig. 11, which shows that the difference is important
only for ammonia and potentially water at P> 8 bar.10 The ratio of the
compositional contribution to the EQTWE (i.e., the second term in
Eq. (142), to the thermal contribution (i.e., the first term in Eq. (142)) is
approximately Δm/ΔT, if the characteristic meridional length scales of
mirror-symmetric components of T and m are similar at the equator.
Here, Δm is defined like ΔT, the normalized difference between its value
at the equator and at 7.5° jovigraphic; = =m m m( 0) ( 7. 5 ).
From Figs. 8 and 11, Δm/ΔT is on the order of up to 10%, so the vertical
zonal shear is given by the EQTWE with a fractional error of only a few
percent due to ignoring compositional effects. Note that the above is
only valid at P< 8 bar where we have observation constraints for NH3,
H2S, and H2O (see Fig. 11, de Pater et al., 2016, and Bjoraker et al.,

Fig. 10. Schematic of the proposed 2-layer cellular circulation in Jupiter’s
troposphere implied by the EQTWE. For altitudes above 5 bar (and beneath the
10–100 mbar height where the equatorial temperature anomaly shifts from
being cold to warm according Fig. 8, air rises adiabatically at the equator, lo-
cally cooling and drying the atmosphere. Dry air then travels pole-ward and
descends down to 5 bar. At altitudes below 5 bar, this scenario is reversed. The
upper layer looks similar to Earth’s equatorial Hadley cells. The flows are in-
dependent of longitude. This scenario is based on our application of the EQTWE
to Galileo Probe wind shear data, assuming horizontal homogeneity in com-
position. If water vapor is inhomogeneous at P> 8 bar, there may be no re-
versed circulation at depth.

Fig. 11. Mixing ratio profiles of ammonia gas at the equator (solid black) and
NEB (dashed black) based on radiative transfer models that fit VLA observa-
tions. The figure shows that the gases are sufficiently small that compositional
effects are not important in the EQTWE, and virtual temperatures do not need
to be used. The curves of water (solid blue) and hydrogen sulfide (solid red) are
derived from thermochemical models assuming both are 4.5 times enhanced
above solar O and S at P> 8 bar (de Pater et al., 2016). The dashed blue line
shows the water abundance profile in a hot spot as derived by
Bjoraker et al. (2015), based upon infrared measurements that are sensitive
down to the 7–8 bar level. The molecular weight is affected mostly by ammonia
at P< 5 bar, and mostly by water at P> 5 bar, depending on the exact mixing
ratio profiles. Note that at present there is no accurate measurement for water
at P> 8 bar. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

10 The ammonia mixing ratios are determined from radiative transfer models
that fit VLA data, but the water and H2S abundances are theoretically derived
from thermochemical calculations, assuming deep abundances for both
(de Pater et al., 2016). It is clear, though, from these models and other data
(including the Galileo probe data – Wong et al. (2004), that the H2S mixing ratio
is much smaller than the NH3 value, and hence will not effect the ratio Δm/ΔT
at altitudes above the water cloud by more than a factor of 2.
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2015). An accurate measurement of water at P> 8 bar is needed to
evaluate its compositional contribution on the EQTWE.

3.5. Comparison with Juno results

Is there a relation between the ammonia plume observed by Juno
near 3.5°N jovicentric as shown in Fig. 12 and the ascending and des-
cending motions at the equator that we inferred from the EQTWE and
the Galileo probe observations as shown in Fig. 10?

The ammonia plume shown in Fig. 12 upwells from below 8 bar
(also see de Pater et al., 2016) to 800 mbar (n.b. ammonia condensation
is believed to occur between 0.7 and 2.5 bar in the EZ) and is presumed
to be anomalously cool due to adiabatic cooling. The term “plume” is
somewhat misleading because the Juno results and
de Pater et al. (2016) suggest that this ammonia “plume” extends
around the entire planet with not much variation in longitude.
de Pater et al. (2016) distinguish between the rising ammonia gas in the
equatorial zone that circumscribes the planet, independent of longitude
(referred to as “plume” above), and bonafide plumes of ammonia gas
signifying the counterpart of the Rossby wave causing the well-known
5 µm hot spots. If we assume that the TWE is valid qualitatively near the
plume (which is not unreasonable because Flasar et al., 2004 used the
TWE at 5° to successfully obtain qualitative information about the
equatorial stratospheric jet), then the TWE implies that on the northern
or polar side [southern or equatorial side] of the cool ammonia plume
that the temperature increases [decreases] with increasing latitude, and
the zonal velocity decreases [increases] with increasing altitude. The
latitude of the entry of the Galileo probe is 6.53°N jovicentric. Assuming
that the plume is cool and applying the TWE to the Galileo entry site
where vϕ decreases [weakly increases] with increasing altitude between
770 mbar and 5 bar [between 5 and 13 bar], the ammonia plume would
need to be south of the entry site at altitudes between 770 mbar and
5 bar but be north of the entry side between 5 and 13 bar. Despite some
meandering of the plume’s central latitude with altitude, this amount of
variation is not supported by Fig. 12. Thus, application of the tradi-
tional TWE to the plume is inconsistent with the Galileo probe mea-
surements.

Now consider what the EQTWE implies about the cool ammonia

plume and the Galileo probe velocity measurements. Model the tem-
perature anomaly of the plume as a Gaussian, so that its local long-
itudinally-averaged temperature is

+T P T P c e(ln , ) ¯ (ln ) ,a( ) /(2 )2 2
(23)

where T P¯ (ln ) is the average temperature as a function of depth, c< 0
is the strength of the temperature anomaly (which is likely to be in the
range of -2 to -8 K), a is the central latitude of the plume (in degrees
latitude and can vary as a function of altitude, but meanders around
3.5°), and χ is the width of the rising plume (also in degrees latitude and
a function of altitude). The EQTWE in Eq. (18) depends on

= + +[ ]T T P e e¯ (ln ) ,M c a a
2

( ) /(2 ) ( ) /(2 )2 2 2 2 rather than T, and al-
though T has a local minimum near the equator, TM can have a local
minimum (if a< χ) or a local maximum (if a> χ) at the equator. Using
this TM and the arguments in Section 3.3 that the vertical wind shear
measured by the Galileo probe is the same as it is at the equator, the
vertical velocity shears deduced from the EQTWE are qualitatively
consistent with the Galileo observations only if a< χ between
770 mbar and 5 bar and a is slightly larger than χ between 5 and
13 bar. From Fig. 12, this dependence of a and χ is possible, but the
observations are not good enough to provide a definitive answer.

However, the latitudinal thickness of the plume may be too small to
allow the application of either the TWE or the EQTWE. To see this, note
that neither equation is valid unless the nonlinear advection terms in-
volving the velocity and its derivatives are small compared to the
pressure and Coriolis terms in Euler’s equation (or equivalently, that the
nonlinear advection terms in Eq. (36) are small compared to the pres-
sure and Coriolis terms). The nonlinear terms are created by different
velocities at different length scales, and the uncertainties in the EQTWE
that we listed in expression (4) come about by requiring the main
contribution to the nonlinear terms are due to large velocities of order
Vθ and Vϕ (or greater) at the large length scales of Lϕ and Lθ (or greater).
However, in any intermittent, turbulent fluid such as the atmosphere of
Jupiter, there are bound to be small features such as vortices and
plumes, where locally a nonlinear advection term becomes large due to
the large velocity derivatives (i.e., small length scales) of the features.
These local, but spatially compact, large magnitudes of the nonlinear
advection terms usually do not invalidate either the TWE or the EQTWE

Fig. 12. Ammonia plume near the Jovian
equator from Li et al. (2017). The colored
contours show the ammonia concentration
measured by Juno in parts per million. The
vertical broken line is at the entry latitude of
the Galileo Probe. The central latitude of the
plume a would need to be south [north] of the
dashed line at altitudes above [below] 5 bar to
be consistent with the TWE. The latitudinal
thickness χ of the plume would need to greater
than [less than] a at altitudes above [below]
5 bar to be co-consistent with the EQTWE. The
thinness of the plume may invalidate the use of
both the TWE and the EQTWE. (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the web
version of this article.)
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as long as the equations are not applied directly to the regions con-
taining these features. (In some sense, one should think of the TWE and
the EQTWE as being used with temperature and velocity fields that
have been averaged over lengths Lϕ and Lθ). Because the ammonia
plume’s latitudinal thickness is approximately 2500 km, which is much
less than Lθ, it might not be valid to use either the TWE or EQTWE with
the plume. One interpretation of the Galileo probe and Juno plume
measurements is that the longitudinally-averaged temperature at
|θ| ≤ 10° has two components. One is a spatially large-scale, nearly
parabolic (in θ) flow, approximately symmetric about the equator.
Between 770 mbar and 5 bar [between 5 and 13 bar], this temperature
has a minimum [maximum] at the equator. Superposed on this large-
scale component, there is a small-scale, cool anomaly associated with
the ammonia plume near 3.5°N jovicentric. However, this small-scale
temperature anomaly associated with the plume has no effect on the
large-scale temperatures and velocities in the EQTWE.

4. Conclusion and discussion

4.1. Summary of findings

We have derived a thermal wind equation valid at the equator, the
EQTWE, that relates the vertical zonal wind shear to the second deri-
vative of the temperature (or density) with respect to latitude. The
EQTWE was derived to be valid at the equator, but it is also accurate at
latitudes up to 18° away from the equator with only a 10 % error. We
used the EQTWE to determine temperature profiles at altitudes below
500 mbar using wind shear measurements from the Galileo Doppler
Wind Experiment Probe and found that the equator is cool with respect
to surrounding latitudes by ∼ 5 K for altitudes above 5 bar. There
appears to be no previously published measurement or inference of
Jovian temperatures at altitudes below 500 mbar, other than those
found with a general circulation model. Below 5 bar, down to
∼ 13 bar, the equator is warmer than the surrounding latitudes by
∼ 2 K. Below ∼ 13 bar, the Galileo probe did not measure values of the
wind shear greater than their uncertainties. We argued that our results
support a 2-layer model of global circulation with the top layer similar
to the Hadley cells on Earth and the lower layer with cells with the
opposite rotation. The 2-layer model was first introduced by
Ingersoll et al. (2000) and later re-proposed by Showman and de
Pater (2005). We also argued that, unlike Neptune, compositional
anomalies such as ammonia and other volatiles11 do not have an im-
portant role compared to thermal anomalies in affecting Jupiter’s ver-
tical wind shear. We showed that at altitudes above 680 mbar (the
highest altitude where we have reported Galileo probe wind speeds), the
strong vertical wind shear continues up to 200 mbar, decreases, and
then changes sign in the lower stratosphere near 80 mbar, and then
changes sign again near 3 mbar. Our result for the wind shear at alti-
tudes between 300 and 500 mbar obtained with EQTWE contradicts
those obtained earlier with TWE because the TWE is ill-conditioned at
low latitudes because the Coriolis parameter goes to zero near the
equator. At 3 mbar we found an equatorial stratospheric jet with ve-
locities of 205 ± 15 m/s, 65 m/s faster than had been previously ob-
tained using the TWE (Flasar et al., 2004) near the equator. To de-
termine the zonal velocities above ∼ 1 bar using the zonal velocity
vertical shear obtained from the EQTWE, it was necessary to integrate
the shear. To do the integration, it was necessary to determine the al-
titude of the “cloud level” at which zonal velocity profiles have been
computed using cloud displacements (c.f., Tollefson et al., 2017). We
found a “cloud level” of 950 ± 250 mbar, higher than the more com-
monly cited value of 500 mbar, but agreeing with results from

Matcheva et al. (2005). The difference in the zonal velocity vϕ between
the equator (with a velocity of 77 m/s) and the latitude of the entry of
the Galileo probe, 7.46°N jovigraphic, is 24 m/s, or more than 30%.
However, the difference in the vertical zonal shear at cloud level be-
tween these latitudes is less than 2% and is approximately 44 m/
s per ln P or −1.9 (m/s)/km. The only altitudes at which we can make a
direct comparison of the shears at the equator and 7.46° are within a
small band around 950 mbar. At altitudes between 1 bar and 680 mbar
(the highest altitude where we have reported Galileo probe wind
speeds) there is a “hook” in the shear of the probe’s measured speeds; a
linear extrapolation of the shear from lower altitudes is, however,
within the probe’s error bars, and hence we cannot be certain this hook
is real.

Our results on the wind shear above 500 mbar illustrate the im-
portance of the EQTWE because another analysis (Li et al., 2006) that
used the TWE came to an opposite conclusion and showed that the wind
shear was approximately zero between 315 and 499 mbar. One of
several problems that Li et al. encountered was that they had to use the
TWE at latitudes as low as 3° where the traditional Rossby number is of
order unity.12 Although it is possible by using the mirror-symmetric
component of T to employ the TWE this close to the equator (see sec-
tion 4.2), it requires great care because it requires taking the ratio of
two small numbers (which is ill-conditioned): the meridional derivative
of T and sin θ, where the former has a large observational uncertainty
(see the error bars in the temperature data near the equator in Fig. 1). A
second problem encountered by Li et al. in using the TWE is that they
were required to find the value of the wind shear at the equator by
extrapolating the values of the wind shear at these low latitudes to the
equator, and extrapolation (in contrast to interpolation) of noisy data is
ill-conditioned. In contrast to the use of the TWE at or near the equator,
the EQTWE is well-conditioned and, in the case examined here, the sign
and magnitude of the wind shear can be determined qualitatively just
by inspection of the thermal observations.

de la Torre Juárez et al. (2002) developed a modified thermal wind
equation (their Eq. (12)) for the vertical wind shear of a “geostrophic
velocity” in terms of a geopotential that is valid at the equator. How-
ever, their horizontal “geostrophic velocity” (defined in the un-num-
bered equation before their Eq. (12)) is identically zero at the equator,
and their modified TWE shows that the vertical shear of this velocity is
proportional to sin θ, so no information is provided by this equation at
the equator. Unfortunately, due to the manner in which their modified
TWE is written, it cannot be Taylor-expanded about the equator to
obtain a useful relationship for the velocity shear as θ→ 0. In fact, their
Fig. 4 for the zonal geostrophic velocity shear obtained with their
modified thermal wind equation using observed temperatures at 100
and 400 mbar shows that the vertical shear is nearly zero (with

<v P| / (ln )| 0.5M m/s) at the equator and up to latitudes with ± 20°.
This finding strongly disagrees (by a factor of 100) with the results
obtained by Flasar et al. (2004) for the full velocity and our results
(Fig. 6) for the mirror-symmetric component of the zonal velocity at
those altitudes. The results of de la Torre Juárez et al. (2002) also
disagree with the velocity shear measurements obtained by the Galileo
probe for the full velocity at lower altitudes.

11 This observations is true for ammonia, but for water and other volatiles,
future observations or new radiative transfer models might show that water or
other volatiles might be important.

12 This value is based on the traditional Rossby number, Ro≡ Vϕ/fL, where
we take Vϕ to be the characteristic zonal velocity, which we set to 170 m/s
using Fig. 2; =f f sin0 ; and = 3 . The value of L is the characteristic length of
the velocity in the meridional direction, which in the context of how Ro is used
with respect to the fractional errors of the TWE is the characteristic value of
r vϕ/(∂vϕ/∂θ). From Fig. 2 in Asay-Davis et al. (2011), the approximate half-
wavelength of vϕ at the equator is approximately 17° or 21,000 km. For a si-
nusoidal function, the characteristic value of the function divided by its deri-
vative is the half-wavelength divided by π, so =L 6,600 km. With these values,

=Ro 1.4
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4.2. Applicability of the textbook TWE near the equator

We noted in our Introduction that Allen and Sherwood (2008) ob-
served that the TWE appears to apply very well to zonal flows on Earth
at low latitudes, and we can now explain the circumstances when the
TWE will work.13First note that the EQTWE in Eq. (10) at pg. 17 states

=f
v
r

g
rT

T ,
M

M

M

P
0

2

2 (25)

where TM and vM are the mirror-symmetric components of the tem-
perature and zonal velocity. Now, Taylor expand ∂TM/∂θ around the
equator to obtain its value at latitude ¯

= + + +

+
= = = = =

T T T T T¯ ¯
2

¯
6

.

M M M M M

¯ 0

2

2
0

2 3

3
0

3 4

4
0

(26)

Noting that

=
= =

T T 0,
M M

0

3

3
0 (27)

we see that

= +
= =

T T O1
¯ [1 ( ¯ )]

M M2

2
0 ¯

2

(28)

= +
=

T O1
sin ¯ [1 ( ¯ )].

M

¯

2

(29)

Substituting Eq. (29) into Eq. (25) gives

= +
= =

f
v
r

g
rT

T O(sin ¯) [1 ( ¯ )],
M

M

M

P
0

0 , ¯

2

(30)

which is the textbook TWE, with the exceptions that Eq. (30) is only the
zonal component of the TWE and that the equation uses only the
mirror-symmetric components of T and vϕ and that the derivative of the
zonal velocity is at the equator rather than = ¯.

Given the zonal shear, the meridional derivative of TM can be de-
termined at low latitudes, very close to the equator with Eq. (30).
However given the meridional derivative of TM, Eq. (30) is ill-condi-
tioned to find the wind shear because it requires computing the ratio of
two small quantities: the meridional derivative of TM and sin ¯. In
contrast, the EQTWE is well-conditioned for finding the wind shear
given the temperature profile and vice versa.

In some cases, such as the measurement of the Jovian stratospheric
equatorial jet (Flasar et al., 2004) and the Earth’s equatorial zonal wind
from radiosonde measurements (Allen and Sherwood, 2008), luck
combined with caution might allow the TWE to be used near the
equator to determine the zonal velocity shear. Luck requires that the
flow is sufficiently mirror-symmetric about the equator so that

T TM A
; otherwise, the needed value of TM

is likely to be difficult

to extract from the observed value of T . Caution requires being able to

evaluate TM
accurately enough from observational or numerical data

that its division by sin θ does not create too large a fractional error.
Consider the stratospheric equatorial jet. In Section 3.2, we argued that
the uncertainties in the CIRS temperature are the principal un-
certainties in determining ∂2T/∂θ2. We believe that the temperature
uncertainties are also the main source of uncertainty in ∂T/∂θ, and
therefore the uncertainties in ∂2T/∂θ2 and ∂T/∂θ near the equator are of
the same order. However, Eq. (29) shows the value of ∂T/∂θ is ap-
proximately 14 times smaller than the value of ∂2T/∂θ2 because
1/ ¯ 14 at the latitudes where the TWE is applied by
Flasar et al. (2004). Thus the fractional error of T(1/sin ) ( / ) and of
the zonal shear deduced from the TWE are of order unity, which is why
it is not surprising that the velocity of the stratospheric equatorial jet
found by Flasar et al. (2004) differs from our value by ∼ 50%.14

The stratospheric jet near 5° latitude has a Rossby number greater
than unity, so the textbook TWE does not apply to it and therefore
cannot be used to compute the zonal shear from the meridional tem-
perature gradient. Eq. (30) does apply, but requires using the mer-
idional gradient of the mirror-symmetric component of the tempera-
ture, ,TM

rather than the gradient of the full temperature, T . If the
meridional gradient of the non-mirror symmetric component of the
temperature had happened to be significant at the altitude of the stra-
tospheric jet, then even if T1

sin were accurately determined, the TWE
would give an incorrect velocity shear.

4.3. Future work

Our application of the EQTWE in the Jovian tropics, resulting in
Fig. 8, supports that scenario of a 2-layer cellular global circulation

13 We noted in our Introduction that an equatorial thermal wind equation was
derived by Andrews et al. (1987) (their Eq. (8.2.2)). Their derivation is effec-
tively as follows. They start with the TWE in Eq. (15):

= +f
v
r

g
rT

T small termssin ,
P

0 (24)

where by “small terms”, we mean all of the terms that were discarded in the
derivation of the textbook TWE because they were judged to be small either due
to slow timescales or a small local Rossby number. The “small terms” are ty-
pically not small near the equator. Andrews et al. (1987) then note that the term
on the left side of Eq. (24) goes to zero at the equator, and that the right side of
Eq. (24) also goes to zero at the equator if T is mirror-symmetric about the
equator. Therefore, they Taylor-expand both terms in θ about = 0, retain only
the leading non-zero term from each expansion (which is equivalent to applying
l’Hôpital’s rule), and drop the “small terms” to obtain our EQTWE in Eq. (3). In
general, dropping the “small terms” is not valid because if the “small terms” are
not identically zero at the equator, then those “small terms” are much larger
than the two terms that were Taylor-expanded, which are identically zero at the
equator. In some sense, the bulk of our derivation of the EQTWE in the Ap-
pendices is spent showing that if T, ρ, and the velocity are mirror-symmetric
about the equator, then the “small terms” (i.e., the terms labeled – in
Section A.2) are also also identically zero at the equator, and when the “small
terms” are Taylor-expanded, the leading non-zero terms are small compared to
f0∂vϕ/∂r and g rT T/( )( / ) P

2 2 .
It appears that Andrews et al. (1987) did not believe that their equatorial thermal

wind equation was generally applicable because if T were not exactly symmetric
with respect to the equator, then at the equator sin θ f0∂vϕ/∂r≡ 0, but
g rT T/( )( / ) P would not be zero. Therefore, if one Taylor-expands
g rT T/( )( / ) P as

+= = =g rT T g rT T g rT T[ /( )( / )] [ /( )( / ) ] [ /( )( / )] ,P P P, 0
2 2

, 0
2 2

, 0
one cannot discard the first two terms of this expansion because =T( / ) P, 0 is not
equal to zero. However, Andrews et al. (1987) were too cautious. Their EQTWE
differs from our EQTWE in Eq. (10) because the latter only relates the mirror-
symmetric components of the velocity and temperature. For most planetary flows,
replacing T with TM and vϕ with vM in an equatorial thermal wind would make only
a minor numerical change. The EQTWE we derived in Eq. (20) does not require any
restrictions on the symmetry. However, the EQTWE that we derived in Eq. (10) has
the symmetry requirement that ([TA]/[TM])2 ≪ 1. This inequality puts a constraint
on how large (∂T/∂θ) can be at the equator: by a Taylor series expansion at the
equator, =T T[ ] ( / )A

0. Thus, the previous inequality requires that
=T T{( / ) } {[ ]/ ¯} ,M

0
2 2 where ¯ is the characteristic distance from the equator

where the EQTWE is applied. This constraint is not strong, and for |θ| ≤ 10°, the
temperatures in Fig. 1 satisfy the constraint by better than 1 part in 105.

14 As we showed in Section 3.2, one large source in the uncertainty in our
measurement of the stratospheric jet wind speed from wind shears obtained by
the EQTWE is the uncertainty in reference altitude for the “cloud level” velo-
cities, which we determined was 950 ± 250 mbar. Flasar et al. (2004), using a
reference altitude of 500 mbar determined the jet velocity is 140 m/s. If we had
used the same reference altitude with our EQTWE analysis, we would have
obtained a maximum jet velocity of 235 m/s.
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schematically shown in Fig. 10 with the boundary between the two
layers near 5 bar (which is identical to the altitude in Fig. 2 where the
wind shear changes sign near ∼ 5 bar). This altitude is also the location
of the proposed Jovian water cloud (Atreya and Romani, 1985; de Pater
et al., 2005), which begs the question of whether the locations of the
boundary and of the water cloud are a coincidence or whether they are
dynamically linked, i.e., it is possible that the upward and downward
motions at the layers’ boundary creates the water cloud or vice versa.
Computational methods and availability of resources have advanced
sufficiently that a 2-layer model can be simulated numerically. A nu-
merical model of the global circulation can show whether the termi-
nations of the up-welling and down-welling motions at the boundary
between the two layers promotes the formation of water clouds. A si-
mulation could also test whether an ab initio water cloud placed at 5 bar
would cause a Hadley cell circulation in the upper troposphere to form
a lower boundary at the location of the water cloud. A simulation could
also be used to determine whether a circulation similar to a Hadley cell
circulation, but with the opposite sense of rotation, in the troposphere
below 5 bar would form an upper boundary at the location of the water
cloud. This type of numerical simulation might also explain why the
equatorial jet near 3 mbar is so intense and whether it is steady in time
or part of a 4–5 year quasi-biennial oscillation. It will be interesting to
see if the global circulation model agrees with our surprising finding
here that the vertical zonal wind shear at the equator and at 7.46°N are
nearly identical despite the fact that the zonal velocities at these lati-
tudes differ by more than 30%. It is important to know how big the
differences are between the winds shear at various pairs of latitudes and
how dependent those differences are as a function of altitude. How
these differences vary with respect to latitude and altitude can distin-
guish between different models of the zone/belt system. Using a fully
dynamic set of equations, that includes the transport of energy and
momentum due to waves (c.f., Rossby waves Liu and Schneider, 2010
and internal gravity waves Holton, 1983) and due to the anomalous
heating/cooling of the clouds (from absorbed/emitted radiation and
due to the phase transitions within them), rather than the kinematic
approximations used in the TWE and EQTWE, could provide an ex-
planation of the Galileo probe velocity measurements that differs from
the Hadley cell explanation in Fig. 10.

Future observations with ALMA with different spectral lines, such as
HCN and CO that probe different depths in the stratosphere (e.g.,
Lellouch et al., 2006), could be used to determine zonal wind speeds as
a function of latitude at multiple altitudes. Using mid-infrared data as in

Fig. 1, one could then test the EQTWE for self-consistency. These
measurements and values could be used to guide the construction of a
numerical general circulation model that extends from the troposphere
into the stratosphere.

The simulation could also be used to analyze the recent Juno
Microwave Radiometer data that suggest a minimum in the ammonia
abundance near the 6 bar level at latitudes |θ| ≤ 40°, except for the
equator (Bolton et al., 2017; Li et al., 2017). This observational finding
seems counter-intuitive to the 2-layer cellular circulation scenario,
where one might expect a condensible gas to decrease with altitude
(due c.f., to cloud formation), but never increase. Showman and de
Pater (2005) postulated latitudinal (horizontal) transport from belts to
zones at all altitudes in the upper cell to deplete the ammonia abun-
dance also in the zones. If, in contrast, gas and clouds are transported in
the upper cell from zones to belts, cloud particles should evaporate
during descent in the belt and thereby enhance the ammonia con-
centration in the belts in the upper layer as observed by Juno. Detailed
numerical simulations of future VLA and Juno observations could either
confirm the 2-layer cellular circulation model or reject it and perhaps
replace it with a new circulation model that is consistent with all of the
observations and with the results of the EQTWE analysis presented in
this paper.

Acknowledgments

We thank Peter Gierasch for interesting discussions. Partial support
was supplied by NSF grants AST-1009907, AST-1615004, and AST-
1510703; by NASA PATM grants NNX10AB93G and NNX13AG56G; by
NASA PAST grant NNX14AJ43G; and by the NASA Earth and Space
Science Fellowship program Grant NNX16AP12H to UC Berkeley.
Partial support for computational work was provided by NSF XSEDE
(NSF OCI-1053575) and NASA-HEC. Data for Figs. 3 and 4 are from
Gemini program GN-2017A-Q-60 and HST programs GO-14334 and
GO-14661. Support for HST programs GO-14334 and GO-14661 was
provided by NASA through a grant from the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Support for Gemini data analysis was provided by the NASA Solar
System Observations Program grant number NNX15AJ41G. The au-
thors acknowledge additional observing team members Amy Simon,
Andrew Stephens, Megan Barnett, Glenn Orton, Gordon Bjoraker,
Alberto Adriani, and Sushil Atreya for use of the HST and Gemini data.

Appendix A

To derive our EQTWE is straight-forward but tedious. In Section A.1, we take the curl of the governing Euler’s equation (in the rotating frame of
the planet) to obtain the vorticity equation, and using the mathematical identities in Appendix B, we simplify it. This simplification is the starting
point of the derivation of both the TWE and the EQTWE. In Section A.2 we show that all of the terms in the vorticity equation for an equatorially-
symmetric flow field go to zero at the equator not just the Coriolis term. Thus, to obtain useful information at the equator, we take the limit of every
term as θ→ 0 by Taylor expanding all of the terms there – a method that is a generalization of l’Hôpital’s rule. In Section A.3 we show that in this
limit that all of the nonlinear advection terms are small compared to the Coriolis and pressure terms. The balance between the limits of the Coriolis
and pressure terms yields the EQTWE. The nonlinear advection terms are small when the flow is dominated by large velocities of order Vθ and Vϕ (or
greater) at the large length scales of Lϕ and Lθ (or greater). This requirement is what leads to our obtaining fractional errors that depend on Vθ, Vϕ, Lϕ,
and Lθ. In Section A.4 we relax the requirement that the flow field be exactly mirror-symmetric with respect to the equator. Relaxing this re-
quirement shows that new fractional errors of order ([TA]/[TM])2, ([ρA]/[ρM])2, and ([vA]/[vM])2 are introduced.

A1. Governing equation for the azimuthal component of the vorticity

Starting with Euler’s equation we now derive the EQTWE. Euler’s equation in spherical coordinates rotating around the z-axis with angular
velocity Ω0 is:

= + × +
t

P f g rv v v v z r( · ) ^ ^ ( cos )/2,0 0
2 2 2

(31)

= × + × +P f g rv v v z r( ) | | /2 ^ ^ ( cos )/2,2
0 0

2 2 2
(32)
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where gravity is in the r̂ direction.
The curl of Eq. (32) gives the vorticity equation.

+ + = × +
t

P fv v v z v v z( · ) ( · ) ( · ) [(^· ) ( · ) ^],2 0 (33)

where the gravity term, which is a potential force, vanishes exactly because it is a perfect gradient (even when g is not constant), and where we used
the following vector identity twice:

× × +A B B A A B B A A B( ) ( · ) ( · ) ( · ) ( · ) . (34)

Taking the dot product of Eq. (33) with ^ and using the identity (see Batchelor, 2000, Appendix 2)

+B A B B rA B A^·[( · ) )] ( · ) ( tan )/ ,r (35)

we obtain:

+ +

+

= × +

t
v r

v v v r

P f
v
z

v

v

( · ) ( tan )/

( · ) ( tan )/
( · )

^· ,

r

r

2 0 (36)

If Eq. (2) is valid, then we could replace × P
2 with ×T P

T .

As a crude approximation, ∇P in Eq. (36) could be replaced with the hydrostatic equation, i.e., P g r̂, so that ∇ρ× ∇p could be replaced
with ×g r̂ , and so that the azimuthal component of ∇ρ× ∇p could be approximated as g

r . Eq. (124) in Appendix B, which we repeat here for
convenience, gives the exact form of this approximation including its fractional errors:

× = +P g
r

O
DV
g L

DV
g L

DV V
g L L

f V
g

V
g r

^·( ) 1 , , , , ,
P

2

2

2

2
0

2

0 (37)

with the large square brackets meaning that the equation has fractional errors of O , , , ,
DV

g L
DV
g L

DV V
g L L

f V
g

V

g r

2

2

2

2
0

2

0
. Note that the partial derivative of the

density in Eq. (37) holds P, rather than z, constant. Here, we define the effective gravity as in Section 4.1, g g f r( cos )/40
2

0 (i.e., g′ is g minus the
centrifugal acceleration in the radial direction).

For the giant gas planets, these fractional error terms are small because the vertical scale height D is much smaller than the extent of the
horizontal flow. Therefore, we shall drop these fractional errors from the remainder of our derivation below, but note that we have included these
fractional errors in the enumerated list of fractional errors listed in Section 4.1, expression (4), and Section A.3.

Using Eqs. (36) and (37) without the fractional error terms, we obtain

+ +

+

= +

t
v r

v v v r

g
r

f
v
z

v

v

( · ) ( tan )/

( · ) ( tan )/
( · )

.

r

r

P
0

(38)

If Eq. (2) is valid, we could replace g
r P

with g
rT

T
P

in the above equation and in all of the following equations wherever g
r P

appears.
Noting that

+
z r r

sin cos ,
(39)

and assuming that changes in the flow are slow in time so that t g r/ [ /( )]( / ) ,P0 Eq. (38) becomes

+ +

+

= +

f
r

v
v r

v v v r
g
r

f
v
r

v

v

cos ( · ) ( tan )/

( · ) ( tan )/ ( · )

sin .

r

r

P

0

0
(40)

Two of the largest contributions to the term v( · ) , which appears on the left side of Eq. (40) cancel, but to see this we need to exploit some
identities.

+ +v
r

v v
r r

v
( · )

cos r (41)

+ +
r

v
v v1

cos
cos sinr

(42)
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r
v v r

v
r

1 1
cos

r

(43)

+
r

r v
r

v v1 r

(44)

Substituting these identities and canceling:15

= +v
r

r v
r

v v v
( · ) 1

cos
r

2 (45)

+
1

r cosθ

[
�����− cosθ

∂vφ
∂θ
+ sinθ vφ +

∂vθ
∂φ

]
∂vφ
∂r (46)

− 1
r2

[
1

cosθ
∂vr

∂φ
− vφ

�
�

��− r
∂vφ
∂r

]
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∂θ (47)

Eq. (40) becomes

+ +
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0

2

0
(48)

The textbook TWE can be derived from the equation above by replacing g
r P

with ,g
rT

T
P

and showing that there is a dominant balance between
the two terms on the right-hand side of Eq. (48). The derivation of the EQTWE Eq. (3) arises similarly but uses a Taylor series expansion around the
equator.

A2. Taylor series expansion

Starting with Eq. (48) we derive the EQTWE in Eq. (3) in two stages. In the first stage, presented in this section, we make the idealized assumption
that the velocity and thermodynamic variables are mirror-symmetric about the equator, i.e., we assume that T, ρ, vϕ, and vr are symmetric about the
equator and that vθ is anti-symmetric. In practice, this is too unrealistic an assumption, so in the second stage of our derivation of the EQTWE,
presented in Section A.4, we drop this ideal assumption. We have chosen to present our derivation in these stages because we believe it is much easier
to explain and understand this way. However, before continuing with the derivation, we need to emphasize that the final derivation does not depend
on mirror-symmetry of the velocity.

Our temporary assumption is that the flow is mirror-symmetric; specifically, each velocity component vr, vθ and vϕ, like the thermodynamic
variables ρ, P, and T, is decomposed, as in Section 4.1, into a component that is mirror-symmetric (denoted with an “M” superscript) about the
equator and a component that is anti-mirror-symmetric (denoted with a “A” superscript). For vϕ and vr:

+v r v r v r( , , ) [ ( , , ) ( , , )]/2M
(49)

v r v r v r( , , ) [ ( , , ) ( , , )]/2A
(50)

+v r v r v r( , , ) [ ( , , ) ( , , )]/2r
M

r r (51)

v r v r v r( , , ) [ ( , , ) ( , , )]/2r
A

r r (52)

However, for vθ the symmetries are defined with the opposite signs:

v r v r v r( , , ) [ ( , , ) ( , , )]/2M (53)

+v r v r v r( , , ) [ ( , , ) ( , , )]/2,A (54)

that is, v M is anti-symmetric with respect to the equator, while v A is symmetric with respect to the equator. The mirror-symmetric component of the
velocity vector vM is made up of the three mirror-symmetric components defined in Eqs. (49), (51), and (53); and the anti-mirror-symmetric
component of the velocity vector vA is made up of the three anti-mirror-symmetric components. It is possible to have solutions to the equations of
motion in which the flow is mirror-symmetric with no anti-mirror-symmetric components defined in Eqs. (50), (52), and (54). (i.e., with

15 We postpone to a footnote in Section A.3 our discussion of how large these canceled terms are and why, without their cancellation, they would invalidate the
EQTWE.
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ρA ≡ TA ≡ PA ≡ vA ≡ 0). We assume in this section that the flow is mirror-symmetric.
A mirror-symmetric flow has an ωr and ωϕ that are anti-symmetric with respect to the equator, while ωθ and (∇ · v) are symmetric with respect to

the equator. With a mirror-symmetric flow, all of the terms in Eq. (48) are anti-symmetric with respect to the equator. This means that every term in
the equation vanishes at the equator, not just the Coriolis terms. This fact does not mean that the equation provides no information at the equator. On
the contrary, by Taylor-expanding each term about = 0, each term becomes a power series in the odd powers of θ. If we replace each of the terms in
Eq. (48) with its power series expansion in θ, then drop all terms that are of order θ3 and higher, and then divide both sides of the equation by θ, we
obtain an equation that is exact at the equator and a good approximation where θ is small. This is an example of an asymptotic expansion and is the
method that was used in evaluating quotients with l’Hôpital’s rule. Finally, we shall make an estimate in terms of the usual dimensionless constants
of each of the terms in Eq. (48) and show that all of the terms on the left side of Eq. (48) are small compared to those on the right side to yield the
EQTWE in Eq. (3).

Before continuing with the derivation, we wish to make several important comments. So far we have been rigorous. We started with Euler’s
equation and differentiated it once to obtain the vorticity equation. Our two approximations so far (assumption of a near steady flow, and the use of
Eq. (37)) end up allowing us to discard terms. However, these approximations were all made after the last differentiation. This is important because
even though a term is small compared to other terms, the derivative of that term may be of order or larger than the derivative of the other terms.
Furthermore, none of our approximations become invalid at the equator. In addition, we have not ignored any components of the Coriolis force.
Finally, there are no (sin θ) terms in any denominators, which would become infinite at the equator.

There is an important difference in carrying out Taylor series expansions of functions that are symmetric or anti-symmetric about the equator. For
a mirror-symmetric velocity field, vϕ is symmetric about = 0 such that =v r v r( , , ) ( , , ), and we Taylor-expand vϕ in even powers of θ, with

= + +v v v[ ] [ / ] /2 ,2 2 2 where the quantities in the square brackets are evaluated at = 0. For a mirror-symmetric velocity velocity field, vθ
is anti-symmetric function about = 0 such that =v r v r( , , ) ( , , ), and we Taylor-expand vθ in odd powers of θ, with

= + +v v v[ / ] [ / ] /6 ,3 3 3 where the quantities in the square brackets are evaluated at = 0. This means that we Taylor expand ∂vϕ/
∂θ at the equator in an odd series as = +v v O/ [ / ] ( )2 2 3 . Similarly, we expand ∂vθ/∂θ at the equator in an even series as

= +v v O/ [ / ] ( )2 .
The Taylor series expansions in Eq. (48) make use of expansions of the vorticity components and the divergence. Expressed as a Taylor series in

powers of θ, note that ωr and ωϕ is an odd function of θ, and ωθ is an even function of θ, with:

= + + +
r

v
v v O1 ( )r

2

2

2
3

(55)

= +
r

v v r
v
r

O1 ( )r 2

(56)

= + +
r

r v
r

v v O1 ( )r
2 2

2
3

(57)

The divergence of the velocity is an even power series:

= + + + +
r

r v
r

v v v
Ov· 1 2 ( )r

r
2

(58)

Below are the Taylor series expansions of each of the terms that appear in Eq. (48), with a label assigned to each term so that we can refer to it
when estimating its order of magnitude. The notation that O(θ3) means “terms of order θ3 and higher”, and note that all of the quantities and
derivatives that have horizontal braces beneath them or in large square brackets should be evaluated at the equator.

= +f
r

v f
r

v
Ocos ( )0

0
2

2
3

(59)

= + +v v
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v
r r
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v
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vv( · ) 1 1 1 1
r

r r
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2

2

2

3

2 2

2

2

(60)

+ +
r

v r v
r

v v1 r
2

2 2

2

(61)

+ + +
v
r

r v
r

v v O ( )r
2

3 2 3

2
3

(62)

= + + +v r
v
r

v
v v O( )/ ( )r 2

2

2

2
3

(63)

= +v r
v
r

v v r
v
r

O( tan )/ ( )r
2

3

(64)
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3
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= + +v r v
r

r v
r

v v O( )/ ( )r
r r
2

2 2

2
3

(66)

= +v r O( tan )/ 0 ( )3

(67)

Note that the Taylor series for the above expression starts with the θ3 term.

= +
v

r
v
r

v
r

v
r

O
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( )3

(68)

= +
r

v
r

v
r

v
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v O1
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1 ( )
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(69)
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r
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v O1 1 ( )2 2

2

2
3

(70)

= +
r

v v
r

v v O1 1
cos

1 ( )r r
2 2

2

2
3

(71)

= + + + + +
r

r v
r

v v v
r v

r
v v Ov( · ) 1 2 ( )r

r
r

2

2 2

2
3

(72)

= +g
rT

T g
rT

T O ( )
P P

2

2
3

(73)

= +f
v
r

f
v
r

Osin ( )0 0
3

(74)

A3. Estimates of the magnitudes of the terms in the Taylor expansion

Now we need to estimate the magnitude of all of the terms in expressions (59)–(74). Recalling that Lϕ, Lθ, and D are the characteristic lengths in
the east-west, north-south, and vertical (i.e., radial) directions over which the time-averaged velocity changes at the equator; and that Vϕ and Vr are
the characteristic velocities of the east-west and vertical components of the time-averaged velocity at the equator; we define Vθ such that the
characteristic value of the time-averaged ∂vθ/∂θ at the equator is r0Vθ/Lθ, where r0 is the characteristic value of r in the atmosphere where we are
carrying out this analysis. To estimate the magnitude of each term, we replace ∂/∂θ with r0/Lθ; ∂/∂ϕ with r0/Lϕ; and ∂/∂r with 1/D.

Non-dimensionalizing each of the labeled expressions in (59)–(74) by expressing it in units of D/(f0 Vϕ), their magnitudes are:16

= O Dr
L

0
2 (75)

= Ro O r
D

V V
V

V V
V

D
r

V V
V

r
L

V
V

D
L

V
V

, , , ,r r r r r0
2 2

0
2

0
2

2

2

2
(76)

= Ro O r
L

V
V

D
L

V
V

Dr
L

V V
V

, , r0
2

2

2

2
0
2 2

(77)

16 In making our estimates of magnitudes, we make the assumption that T, ρ, and v have only one magnitude and one length scale associated with each of the three
spatial dimensions. This is, of course, not true, and although an intermittent turbulent flow filled with vortices and waves may be dominated by a large-scale flow
with temperatures, densities and velocities with characteristic lengths of Lθ, Lϕ, and D, the velocity field is likely to be filled with small, intense vortices whose values
of ∇ × v at some specific locations with small volume that are much greater than Vϕ/Lθ, etc. These small vortices do not invalidate our estimate of the magnitudes as
long as they do not significantly affect the longitudinally-averaged, quasi-steady flow. We could quantify the previous statement by returning to Eq. (32), and
averaging it in θ and ϕ over length scales of size Lθ and Lϕ, respectively.
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V
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D
L

V
V

Dr
L L
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V

, , r0 0
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= Ro O D
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V
V

, ,
0
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(79)

= Ro O DL
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D
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V
V
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V

, , r0 0

(81)

= Ro O V V
V

D
r

V V
V

D
L

V
V

, ,r r r
2

0
2

2

2
(82)

= 0 (83)

= Ro O L
r0 (84)

= Ro O r
L

V
V

0

(85)

= Ro O D
L (86)

= Ro O Dr
L L

V
V

r0

(87)

= 1, (88)

where Ro V f L/( )0 . Note that the term comes from ωϕ (∇ · v), and the terms , , and come (v · ∇)ωϕ. It should be obvious that estimating the
magnitudes of terms by replacing ∂/∂θ with r0/Lθ; ∂/∂ϕ with r0/Lϕ; and ∂/∂r with 1/D as we did to obtain Eqs. (75)–(87), will lead to an estimate that
the term is of the same order as the , , and terms.17Using this estimate for and the assumptions numbered 2 – 4 in Section 4.1 that D≤O
(r0), D≤O(Lθ), and D≤O(Lϕ), we see by inspection that all of the terms – are of order

Ro O r
D

V V
V

r
L

V
V

D
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r L

V
V

L
r

, , , , , , , .r r r r0
2

0
2

2

2

2
0 0

0 0 (89)

or less.
We can make a further simplification of the fractional errors if the flow is divergence-free, which implies:

V D O V L V L/ ( / , / ).r (90)

Using this expression18 to replace Vr/D in expression (89), and again using assumptions numbered 2 – 4 in Section 4.1 shows that all of the terms –
are of order

O Ro Ro r
L

V
V

r
L

V
V

r
L

D
L

, , , ,0
2

2
0 0

(91)

or less, where Ro is another type of Rossby with Ro V f r/( )0 0 . If expression (91) is small compared to unity,19 and if Dr
L

0
2 is also small compared to

unity, then terms – are small compared to the term, and the effect of terms – in Eq. (48) can be written as fractional error terms. In
particular, Eq. (48) can be re-written:

= +g
r

f
v
r

O Ro r
L

V
V

r
L

V
V

r
L

D
L

DV
gL

DV
gL

DV V
gL L

Dr
L

Ro1 , , , , , , , , ,
P

2

2 0
0

2

2
0 0

2

2

2

2
0
2

(92)

where we have included all of the fractional errors that we have made, (including the approximation used in Appendix B in Eq. (124) with the
exceptions of the very modest approximations: D≤O(r0), D≤O(Lθ), D≤O(Lϕ), and that the flow is sufficiently steady in time that the characteristic

17 Actually, this estimate for is very likely to be a large overestimate because most of the flows in planetary atmospheres are nearly divergence-free. This
overestimate means that our final estimate of the fraction errors in the EQTWE might be inflated. However, this is consistent with all of our estimates of the fractional
errors because we are purposefully taking a conservative approach to error estimation and not considering that there are cancellations between large terms.

18 This is likely to be an overestimate of the magnitude of Vr/D when the horizontal divergence of the velocity is small compared to Vθ/Lθ or Vϕ/Lϕ, which is often
the case in planetary flows.

19 If the term r
v
r

v1 had not canceled in Eqs. (46) and (47), then there would be an additional fractional error term of Ro r L( / ),0 which could be very large if
r0 ≫ Lθ.
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value of ∂ωϕ/∂t at the equator is less than or equal to the characteristic value of v · ∇ωϕ at the equator. If Eq. (2) is valid, then

= +g
rT

T f
v
r

O Ro r
L

V
V

r
L

V
V

r
L

D
L

DV
gL

DV
gL

DV V
gL L

Dr
L

Ro1 , , , , , , , , .
P

2

2 0
0

2

2
0 0

2

2

2

2
0
2

(93)

Eqs. (92) and (93) may be considered to be “overkill” with respect to listing all of the fractional errors. The long expressions for the fractional
errors come about because we have considered the possibility that the characteristic two horizontal Vϕ and Vθ could be very different and that Lϕ and
Lθ could be very different. Usually (c.f., Pedlosky, 1979, Chapter 2), the characteristic velocities would be considered the same. Similarly, the two
characteristic horizontal lengths Lϕ and Lθ would also be considered the same.

To compare our fractional errors of the EQTWE to the reported fractional errors in the textbook TWE, we can take a less cautious approach to
estimating error size by assuming (as many other authors have) that Vϕ/Lϕ ≃ Vθ/Lθ. Using this relationship, the fractional errors in the EQTWE are:

O Ro r L
L

r
L

D
L

DV
gL

Dr
L

Ro, , , , , .0
2

0
2

2
0
2

(94)

If we are even less cautious and adopt the traditional assumption that =V V , then the fractional errors in the EQTWE are:

O Ro r
L

DV
gL

Dr
L

Ro, , , .0
2

2
0
2

(95)

Thus for a mirror-symmetric flow, the EQTWE is:

=g
rT

T f
v
rP

2

2 0 (96)

with fractional errors in Eqs. (93), (94), or Eq. (95).
If Eq. (2) is not valid (as is the case of Neptune Tollefson et al., 2018), then the wind shear is related to the density by the “equatorial density wind

equation” (EQDWE), which from Eq. (92) is:

=g
r

f
v
rP

2

2 0 (97)

This equation has the same fractional errors as the EQTWE. It can be re-written to look like the EQTWE if the kinetic temperature T is replaced with
the virtual temperature as done by Tollefson et al. (2018) in applying it to the zonal flows of Neptune.

We close this section with comments about the derivation we wish to stress. If the assumptions enumerated in Section 4.1 are true, Eqs. (96) and
(97) are valid at and near the equator. The reason the textbook TWE does not work at the equator is because the second term on the right-hand side
of Eq. (48) equals zero, meaning that other terms must balance the thermal component. However, as we have shown all terms in the equation are
zero at the equator. We also point out that the detailed fractional errors in the textbook TWE can be derived (without assuming that =V V and that

=L L ), by re-examining Eq. (48) and using the estimating techniques employed in Section A.3 to determine the relative importance of the terms on
the left side of the equation to the terms on the right side.

A4. Extension of the Equatorial Thermal Wind Equation (EQTWE) to flows without mirror-symmetry

In this section we drop the assumption that the flow is mirror-symmetric and re-derive the EQTWE along with its fractional errors. We shall show
that the only change needed for a non-mirror-symmetric flow is that EQTWE now relates the mirror-symmetric components of the temperature or
density to the mirror-symmetric component of the azimuthal velocity, such that Eq. (96) becomes

=g
rT

T f
v
r

,M

M

P

M2

2 0 (98)

and Eq. (97) becomes

=g
r

f
v
r

.M

M

P

M2

2 0 (99)

The only fractional error that these equations have that are in addition to those already listed in Eqs. (92) or (93) is O{[ρA]/[ρM]}2 or O{[TA]/[TM]}2,
respectively. Note that these equations are formally valid only at the equator. However, we can employ them at small distances from the equator,
e.g., the entry location of the Galileo velocity probe data, by suitable Taylor expansions.

We begin by taking the anti-mirror-symmetric component of Eq. (48) to obtain.
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The large brackets with the superscript A, {}A means “take the anti-mirror-symmetric component of the quantity within the brackets”. We have used

the facts that the anti-mirror-symmetric component of f r
v

0
cos is exactly f ,r

v
0

cos
M

and that the anti-mirror-symmetric component of

f sin v
r0 is exactly f sin

v

r0

M
. We also used the fact20 that the anti-mirror-symmetric component of g

r P
is g

r
P

M
M

with a fractional error of O

[(ρA/ρM)2].
Following the methodology used in Section A.2 (and the spirit of l’Hôpital’s Rule), we Taylor-expand each term in Eq. (100), divide by θ, and

retain only the first term. The Taylor expansion of f r

v
0

cos
M

is an odd series in θ and is

+ +
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v f
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v f
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v
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2 6
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M M M
0
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2
3 0

2

2
0

4

4
5

(102)

where the expressions in large square brackets should be evaluated at the equator. So, for this term we retain only

f
r

v
,

M
0

2

2
(103)

The term in Eq. (103) is similar to the term in Eq. (59). As another example, the Taylor series expansion of f sin
v

r0

M
in Eq. (100) is also an odd

series in θ:

+ +f
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r
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M M M

0
3

0

3

2
5

(104)

So, we retain only

f
v
r

,
M

0
(105)

The term in Eq. (105) is similar to the term in Eq. (74). The same estimates that were used in Section A.3 show that the term in Eq. (103) is smaller

than the term in Eq. (105) by a factor of Dr
L

0
2 . Therefore, we can drop the term f r

v
0

cos
M

from Eq. (100) and account for it by noting that it leads to

a fractional error of O Dr
L

0
2 .

After dividing by θ, the first term in the Taylor series expansion of g
r

P
M

M
in Eq. (100) is

g
r

,M

M

P

2

2 (106)

where all of the quantities and their derivatives should be evaluated at the equator.
By definition, the long, multi-term expression in Eq. (100) that has {}A is anti-mirror-symmetric. Therefore when it is expanded as a Taylor series

about the equator, it is an odd series in θ. Following the procedure in Section A.2, we could find the first non-vanishing term of the Taylor series
expansion of each of these terms, and then estimate their magnitudes following our method in Section A.3. However, it is not necessary to do so. In
Section A.3, we found that the terms surrounded by {}A were all much smaller21 than the term in Eq. (105), and we calculated the resulting fractional

20 We note that the anti-mirror-symmetric component of g
r P

is

+g
r

g
r

O
( )

( ).M

M

P
M

A

P

2

2 2

2
3

(101)

If we could accurately measure ,
A

P
we would have an equatorial density wind equation or EQDWE of the form = f ,g

r M
M

P
M

A

P

v M

r

2
2

1
2

0 and this

equation would hold without fractional errors involving [ρA]/[ρM]. A similar expression can be found for the EQTWE (see Eq. (20) below) without fractional errors
that involve [TA]/[TM].

21 This is only true if [vA] ≤ [vM], so we should include this inequality in our list of assumptions in Section 4.1. However, this inequality holds for all of the giant
gaseous planets. For example, there is no planet in which the zonal component of the velocity, vϕ, near the equator is mostly anti-symmetric.
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errors in Eq. (48) that would arise if we dropped them. Our analysis did not depend on the symmetry of the terms, but only on the estimates of their
velocities and lengths. These estimates still hold, so the analysis in Section A.3 also works for Eq. (100) as do the estimates of the fractional errors
that arise when the terms surrounded by {}A are dropped from Eq. (100). Equating expression (105) to expression (106), we obtain the equatorial
density wind equation, EQDWE, or Eq. (99). If Eq. (2) is valid, then the EQTWE, or Eq. (10) follows. These two equations have the fractional errors
listed in Section 4.1.

Appendix B

Here we prove the identities in spherical coordinates:

× × + ×P P
r

Pr1 ^
P

2 2 2 (107)

× + × + + ×g P P
r

gr r^ 1 ^ ,
P P

2 2 (108)

where ∇⊥ is the horizontal (i.e., non-radial or θ and ϕ directions) component of the gradient operator holding r constant, and where P is the
horizontal (i.e., non-pressure coordinate direction) component of the gradient operator holding P constant. Partial derivatives with respect to r
implicitly mean to hold θ and ϕ constant. These identities will allow us to relate the gradients of the temperature along constant r surfaces ∇⊥T to
gradients of the temperature along constant P surfaces TP . Approximations of these relationships are implicitly used in most textbook derivations
of the thermal wind equation, but for completeness, we derive them here with no approximations.

We start with the chain rule identity between the (r, θ, ϕ) coordinates and the (P, θ, ϕ) coordinates:

+
r

r ,
P r P, , , , (109)

where we remind the reader that the subscripts of the large vertical bars are the independent variables that remain fixed during the partial
differentiation. A similar chain rule is

+
r

r ,
P r P, , , , (110)

Combining Eqs. (109) and (110) gives a “horizontal gradient” chain rule:

+
r

r .P r P
, (111)

Using another chain rule identity

P
r

r
P

1,
P r, , , (112)

we obtain

r P P
r

/ .
P r, , , (113)

A chain rule similar to Eq. (113) is

r P P
r

/ .
P r, , , (114)

Combining Eqs. (113) and (114) gives

r P P
r

/ .P
, (115)

Using Eq. (115), we eliminate r P from Eq. (111) and obtain

r
P
r

P/P (116)

The tautology:

× × × + ×P P
r r

P Pr r^ ^ , (117)

combined with Eq. (116) gives

× × + ×P P
r r

P
r

P Pr̂ /
(118)

However using Eq. (116), we see that the expression in the large curly brackets in Eq. (118) is equal to ,P so Eq. (118) becomes
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× = × + ×P P
r

Pr̂
P (119)

= × + + × + ×g P
r

g Pr r^ ^
P

P (120)

Note that we are only interested in the ϕ component of (∇P× ∇ρ):
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^·( ) 1 1 1
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(123)
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f V
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P

2

2

2

2
0

2

0 (124)

where we used the radial component of Euler’s equation to go from Eq. (121) to Eq. (122), and we used Eq. (90) and the assumption that the
characteristic time for vr is sufficiently slow that |∂vr/∂t| is less than or equal to one or more of the other terms within the large parentheses to go
from Eq. (123) to Eq. (124). Note that the last two fractional errors in Eq. (124) are small compared to the third fractional error if Ro 1. Table 1
shows that Ro 1 and that the other fractional errors in Eq. (124) are small, so that subject to these small fractional errors, we obtain:

×P g
r

^·( ) .
P (125)

Note that using the same reasoning as we used above, we can show that

× × + ×P T
T T
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r

T P T
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P (126)

× + ×

+ + ×
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T P T
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r
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r

r

^

1 ^ ,
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P (127)

and that

×P g T
r

T^·( ) .
P (128)

Finally, we note that for the observable layers of the atmospheres of the giant gas planets, generally the horizontal gradients of the temperature and
density along surfaces of constant pressure are similar to their values along surfaces of constant r. To see this, note that Eq. (116) shows that when
Vθ ≃ Vϕ and Lθ ≃ Lϕ that

O V gD V gDRo/ ( /( ), ( sin )/( )).P
2 2 (129)

An equation similar to Eq. (129) holds for the temperature.

Appendix C

We wish to apply the equatorial density wind equation, EQDWE, in Eq. (99) to the Galileo probe wind shear measurements on Jupiter. In this
case, it is possible that the EQTWE does not apply because the atmosphere is a mixture with more than one component, and the mixing ratios of the
components may be functions of location, so Eq. (2) is not valid. (Neptune has a non-constant mixing ratio, so the modification below is required –
see Tollefson et al., 2018). Here, we re-write the EQDWE in a form that is easier to apply to the observations. Note that

+ ,H He X (130)

where ρ is the total density, H He is the density due to the “dry” hydrogen-helium atmosphere without condensibles, and ρX is the density due to a
condensible species X, which could be water or methane or ammonia, etc. This equation is exact. Here, we limit ourselves to just one condensible
species.

= +P P P ,H He X (131)

where P is the total pressure, PH He is the partial pressure due to the “dry” hydrogen-helium atmosphere, and PX is the partial pressure due to species
X. This equation is Dalton’s law of partial pressure. We assume that the ideal gas law for a mixture applies:

= +P T R R( )H He H He X X (132)
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= +R T µ µ¯ ( / / ),H He H He X X (133)

where R̄ is the universal gas constant (independent of species), µH He is the molecular weight of the hydrogen-helium mixture, μX is the molecular
weight of species X, R R µ¯/H He H He is the specific gas constant of the hydrogen-helium mixture, and R R µ¯/X X is the specific gas constant of species
X.

Along an isobar of pressure P0,

= +P
RT µ µ¯ ,H He

H He

X

X

0

(134)

or equivalently
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Thus,
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2 (137)

Therefore up to fractional errors of O{[ρA]2/[ρM]2}, at the equator,
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Eqs. (131) and (134) show that
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Using Eq. (139) in Eq. (138), we obtain
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(140)

Planetary and atmospheric scientists generally use the mixing ratio m≡ ρx/ρ, and to leading order in m (Fig. 11 shows that m is order 10 4), Eq. (140)
evaluated at the equator is
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T m
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m µ
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1 1 1 1 1 ,M
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2 (141)

where mM is the mirror-symmetric component of m. Using Eq. (141) in the EQDWE in Eq. (99), we obtain an equation for the dimensionless vertical
shear

= +
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v
r T

T m
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µ
m µ

µ
1 1 1 1 .

M

M

M

P
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0
2

2

2

2 (142)

The first term on the right side of Eq. (142) is the contribution to the dimensionless vertical shear due to the temperature. The second term on the
right side of Eq. (142) is the compositional contribution.

For planetary flows that do not obey an ideal gas equation, such as a liquid planetary center or the nearly incompressible hydrogen core in the
deep interior of Jupiter or Saturn, a virtual temperature and the equation above will not be useful. In these cases, one should deal directly with the
equatorial density wind equation, or EQDWE, in Eq. (99).
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