

BEAM FOUR
Optical Ray Tracer

Java Edition

Release 208
(c) 2008, 2019 All Rights Reserved

STELLAR SOFTWARE
Berkeley CA 94708 USA
www.stellarsoftware.com

Email info@stellarsoftware.com

BEAM FOUR JAVA EDITION --- MENU REFERENCE

File Edit Run Options Help
New Optics Cut InOut InOut Show Error
New Rays Copy Layout Layout Special Keys
New Media Paste Plot2Dim AutoAdjust About….
Open Optics Delete MultiPlot Plot2Dim
Open Rays Select All Map MultiPlot
Open Media Plot3Dim Map
Recent Optics Histo1Dim Plot3Dim
Recent Rays MTF Histo1Dim
Recent Media Histo2Dim Histo2Dim
Save Table AutoAdjust Random
Save Table As AutoRay CAD
Quick PNG Random Startup Files
Write CAD Demo Factory Settings
Write Histo Editors
Print/PDF Graphics
Quit Default Rays
 Ray Generators
 Look and Feel

BEAM FOUR OPTICAL RAY TRACER
JAVA EDITION

TABLE OF CONTENTS

1 Introduction and What’s New 5
2 BEAM FOUR Capabilities 7
3 About Java 13
4 Installation 14
5 About Ray Tracing 15
6 Coordinate Systems 18
7 The File Menu 22
8 The Edit Menu and the Editor 24
9 Optics and Optics Tables 27

10 Rays and Ray Tables 59
11 Media and Media Tables 73
12 The Run Menu: the InOut Function 75
13 The Run Menu: the Layout Function 78
14 The Run Menu: Plot 2D 84
15 The Run Menu: MultiPlot 87
16 The Run Menu: Map 91
17 The Run Menu: Plot3D 94
18 The Run Menu: Histo 1D and MTF 97
19 The Run Menu: Histo2D 98

 99

20 The Run Menu: AutoAdjust

21 The Run Menu: AutoRay 111
22 The Run Menu: Random Rays 114
23 CAD Graphics Output 116
24 Options Menu 118
25 The Help Menu 121
26 Spreadsheets 122
27 Sample Session 127
28 Sample Files 128
29 Viewing Stereoscopic Displays 131
30 License and Warranty 132

Appendix 1 Conic Surfaces 133
Appendix 2 Rotation Sequences 135
Appendix 3 Zernike Polynomials 140
Appendix 4 Diffraction Gratings 141
Appendix 5 Holographic Optical Elements 144
Appendix 6 Reverse Ray Tracing 146

 Index 147

STELLAR SOFTWARE

Berkeley CA 94708 USA

www.stellarsoftware.com
info@stellarsoftware.com

 5

Chapter 1: Introduction and What’s New

Welcome to BEAM FOUR. This optical ray tracer combines features of many
previous editions of optical ray tracers from Stellar Software with several new additions
and improvements suggested by our worldwide users. In 2004, this Java® edition has
been rewritten entirely in pure Java language and compiled to Java byte code, ready to
run on a great variety of computers for which a native Java environment is freely
available from Oracle (www.oracle.com) and from Apple (www.apple.com)). The fact
that Java supports a broad variety of computers and operating systems means that now,
with BEAM FOUR Java Edition, a single optical ray tracer package can run almost
anywhere.

BEAM FOUR is a table driven ray tracer. That is, an optical system is described by
tables of entries. Each successive table row or record represents a successive optical
surface in the optical system to be traced. This information is created, edited, and saved
as an optics file with extension .OPT and quite a few examples are provided with the
BEAM FOUR software distribution. Similarly, a .RAY table is a text file listing the rays
that you create to probe your optic. Each successive row or record represents a ray to be
traced. As a user you are responsible for starting each ray (specifying its starting position
and direction and in many cases a wavelength). Given this starting information, the ray
tracer completes the computation of each ray as it propagates through your optical
system, delivering numerical and graphical outputs in a variety of useful formats. Finally
there are optional media tables (file extension .MED) that list refractive index
information about glasses that your optic uses at a series of wavelengths that your ray
table specifies. Each row of the table represents a glass type. Again, working examples
of media tables are furnished with this software distribution.

For your convenience these data tables are plain ASCII text files. They may be freely
copied, e-mailed, and incorporated into other documents. They can be loaded into
popular spreadsheets such as Microsoft Excel® for further analysis, and conversely you
can generate suitable .OPT, .RAY, and/or .MED files within a spreadsheet and use them
in BEAM FOUR. The editor is able to read text files written on a variety of operating
systems (Unix®, Solaris®, Linux®, MS-Windows®, Macintosh®) to simplify sharing
data among platforms and within workgroups.

This manual is organized to help you get started using BEAM FOUR. The quick
reference guide on the inner front cover shows the main menu and submenus for all the
activities: loading files, performing ray traces, and specifying your preference options for
the various activities. The first six chapters contain introductory material describing the
capabilities of ray tracers in general and BEAM FOUR in particular. Chapters 7 and 8
describe the file system and the built-in table editor, which has capabilities beyond the
usual text editor to simplify working with the data tables. Chapters 9 through 11 describe
how to set up the input tables for optics, rays, and refractive media. Chapters 12 through
22 describe BEAM FOUR's output functions and their uses. Chapter 23 “CAD”

 6

describes the technical graphics file outputs available. Chapter 24 "Options" shows how
to set your preferences for the many features of BEAM FOUR. Chapter 25 describes the
help menu. Chapter 26 deals with spreadsheets for input to BEAM FOUR and for post-
processing BEAM FOUR output. Chapters 27 and 28 illustrate program operation and
describe the demo files furnished with this software. Chapter 29 offers suggestions for
viewing stereoscopic images that B4JE produces. Warranty and licensing information is
to be found in Chapter 30. Appendix 1 summarizes the mathematical properties of
simple conic section surfaces. Appendix 2 describes rotation sequences and their uses.
Appendix 3 describes Zernike polynomials, useful in characterizing perturbed optical
surfaces and wavefronts. Appendix 4 describes diffraction gratings, and Appendix 5
discusses holographic optical elements.

What’s New? If you are already experienced with our previous product lines you will
find things very familiar. Your existing data tables can be used with only one minor
change (groups have been replaced by bimodal surfaces), giving you all the added
features starting at release 207. For a quick start, install the software (Chapter 4), read
the overview given in Chapter 2, and then try the guided tour in Chapter 27. The new
features that distinguish this Java edition of BEAM FOUR from previous releases deliver
some exciting new capabilities:

• Electronic distribution of programs, examples, and documentation (Chapter 4);
• Multi-platform functionality thanks to pure Java code (Chapter 3);
• Handles negative refractive index media (Chapter 9);
• Computation and optimization using wavefront error (Chapters 6, 10, 20);
• Includes arrays of lenses, mirrors, and irises (Chapter 9);
• Handles alternate-path bimodal surfaces, each separately specified (Chapter 9);
• Offers 3-D viewing capability using red-blue spectacles (Chapter 29);
• Offers choice of asphericity vs shape for conic & higher surfaces (Chapter 9);
• MultiPlot capability: a grid of plots with stepped parameters (Chapter 15);
• Map: a new way to visualize optical performance over a field (Chapter 16);
• AutoRay helps with setup of ray start locations or directions (Chapter 21);
• Improved ganging and anti-ganging of auto adjustables (Chapter 20);
• Zernike polynomial representation of surfaces & deviations (Appendix 3);
• Built-in ray generators for four common illumination situations (Chapter 10).

Beginning with release 166, Stellar Software's BEAM FOUR product is free. You may
make backup copies of the software and install it on as many computers as you like. The
program is protected by international copyright regulations and we expect it to be treated
as you would treat a book: rights of use are yours, but rights of distribution remain vested
with the publisher, Stellar Software of Berkeley California. The BEAM FOUR project is
now also open source, pure Java, available via GitHub, and copyrighted with terms
specified by the GNU General Public License version 2.

 7

Chapter 2: BEAM FOUR Capabilities

BEAM FOUR is a ray tracer that offers a quick and easy means of exploring the
properties of optical systems. It is suited to a variety of tasks in optics, engineering, and
science, including

• pilot design of lens, mirror, and prism systems for cameras, telescopes, copier and
relay systems, magnifiers, microscopes, collimators, spectrographs etc;

• production of spot diagrams to show the expected ray distributions to be found
within an optical system;

• preparation of quantitative graphs and plots that illustrate optical system
performance;

• image analysis for tilt, decenter, curvature, profile of individual elements.

BEAM FOUR can handle optical systems having up to 99 successive surfaces. This
sequence of surfaces can include any sequence of refractor, reflector, diffraction grating,
holographic element, iris, lenslet, and phantom surfaces. (A phantom surface is one that
has no effect on the light propagation but instead serves as a mathematical reporting point
at which ray positions and directions can be gathered.) Your description of the optical
system to be traced is created, edited, and stored in a text file whose extension is .OPT.
Because every unspecified parameter has a reasonable built-in default value, these data
tables can be relatively simple. Exam13.4 shows how a plano-convex lens, an iris, and a
two mirror relay can be stacked together along the Z axis:

Fig. 2-1 Example of an optics file being edited. Editor features and customization are
described in Chapter 8 "Editors" and Chapter 24 "Options." Optics file information is
discussed in Chapter 9, "Optics". This optics table is from Example 13.4.

Surfaces may be arbitrarily located in space with arbitrary orientations -- that is, a surface
may be tilted, pitched, rolled, and decentered to any degree. Any surface may be
assigned a definite working diameter or X and Y sizes, to impose a limited acceptance of
rays. Alternatively it can be assigned no particular size, in which case it will
accommodate all rays that can mathematically reach it. Although default surface shapes
are flat or spherical, any surface can be assigned a conic constant parameter value to

 8

represent the conic section shapes: hyperboloids, paraboloids, ellipsoids. In addition,
polynomial, cylindrical, and toric surfaces profiles can be assigned to any surface, and
combinations of all the above. Zernike polynomials 0..35 can be applied to any surface
to model various forms of surface deviation. The limiting cases of these profiles are also
included so that cones, axicons, straight dihedrals, toric dihedrals etc can be modelled.
Irises can be circular, elliptical, square, or rectangular, and can be assigned blind centers.
Arrays of lenses, mirrors, and irises can be specified. From these individual elements
surfaces may be combined to represent an enormous variety of optical systems. Here's a
very simple example, the biconvex lens whose table appears just above:

Fig. 2-2: A lens + mirror relay drawn using the Run::Layout function, including rays
whose starting positions and directions in the demo file for Figure 13.4. Viewing pan,
zoom, and orientation are all controlled by your two-button one-wheel mouse.

An important restriction for BEAM FOUR work is that you must specify the optical
surfaces in the same sequence that rays will arrive at them. The sequence of specified
surfaces defines the sequence in which the ray segments are traced. BEAM FOUR relies
on your optical description to establish its trace sequence. It is therefore sequential, not a
free-form tracer of the kind commonly used in illumination engineering or stray light
programs. (See however Chapter 9 and groups of mirror surfaces.) The advantage is that
a sequential tracer is computationally efficient. No time or machine cycles are lost in
evaluating the multitude of all possible intercepts and deciding which of all possible
surfaces is the immediate target for each given ray segment. Of course this approach
presupposes that you have a clear idea as to the intended light path through your system,
so that you can specify the sequence of surfaces to trace. In classical optical design
situations this assumption is valid. However it is invalid in situations where an unknown
number of reflections or scatterings occur. For those cases you will need to trace several

 9

alternative ray sequences, or adopt a non-sequential ray trace program. Although
sequential, surfaces that are bimodal can be skipped by rays that miss them.

Contemporary optical practice often requires that a number of refractive materials be
combined to create a highly achromatized system. BEAM FOUR supports work of this
type by allowing your refractive index information to be stored in glass tables and loaded
as needed for each design task. When computing a ray trace, BEAM FOUR uses this
information automatically. One example is the file GLASS.MED that has eleven
common refractive media at four wavelengths in the visible part of the spectrum; another
is SCHOTT.MED which has 95 Schott glasses at six wavelengths. You may use these,
edit them, augment them, or generate your own glass tables for use as needed. Glass
tables are completely open: you may name your glasses and your wavelengths however
you wish, and then use these as lookup tables to perform ray traces.

Up to 3000 distinct ray starts can be specified as part of one illuminating beam and can
be maintained as a single .RAY file. Additional files, limited only by your disk space,
can of course also be employed. In this way a variety of optical illuminators can be
applied to one optical system, but also a variety of optical system variants (differing .OPT
files) can be used with a single .RAY file. These interactions of file data allow you to
prototype and evaluate a range of optical designs and compare their performance.

Ray start information can be entered manually into a ray table, or can be transferred from
a spreadsheet. Alternatively there are built-in ray start generators that can initialize your
ray table for you with the three most common ray grids: a simple linear sequence for fan
beams or ribbon beams, a two-dimensional rectangular grid, and a two-dimensional
circular pupil grid.

The .RAY table serves for numerical output as well as input. Beyond just specifying
where each ray is to start and how it is to be initially directed, a .RAY table can be set up
to provide space for the results of the ray trace at intermediate and/or final locations
within the optical system. In this way you can keep input and output data together in a
compact and easily reviewed way. A nice feature of the .RAY table is its total
programmability --- you can set up columns that represent just those optical data that
interest you, and have it default (on input) or ignore (on output) all other data.

 10

Fig. 2-3 Example of a portion of a .RAY table being edited. User input data define the ray start
positions and directions and wavelengths. Other columns can be assigned to display output
data. RAY tables are often much bigger than .OPT files because a .RAY table has as many ray
data records as there are ray starts, while the .OPT table has only as many records as there
optical surfaces. To get the numerical results of a trace, click Run::InOut.

The BEAM FOUR ray trace algorithm is fully three dimensional. It is not limited to
paraxial ray groups, or to meridional or sagittal ray fans. Ray redirection accuracy is
maintained from normal through extreme grazing angles, and makes full use of Java's
double precision numerical accuracy, typically 14 decimal digits.

BEAM FOUR includes a text table editor to use in creating and revising the program's
data tables (.OPT, .RAY, and .MED). These tables are plain ASCII text files that let you
share the information between various platforms, and also share them via email and use
them with spreadsheet or database manager software.

BEAM FOUR includes a Monte Carlo random ray generator for probing optical systems.
Each graphic display window has an associated Run::Random menu item that begins the
process of generating and tracing random rays through your optic. These rays span the
extent of the overall ray beam outlined by the most extreme ray positions and directions
supplied in your current .RAY table. Using Run::Random you can populate the various
output products (layouts, histograms, spot diagrams, etc) with thousands or millions of
rays to better understand the properties of the images formed by your optical system.

BEAM FOUR includes a Levenberg-Marquardt nonlinear iterative least squares
optimizer. It allows tagged optical and/or ray start parameters to be adjusted for least
mean square discrepancy between the computed final ray states and your specified ray
goal values. This function is invoked with Run::AutoAdjust.

BEAM FOUR uses a graphical user interface (GUI) with pop-up menus, mouse-selected
items, keyboard shortcuts, dialog windows, and a multiple-document interface wherein
the various input and output data windows are organized in a single application window

 11

equipped with a main menubar. The underlying Java engine has the ability to mimic the
salient aspects of popular operating system user interfaces so that your user experience
remains nearly seamless.

BEAM FOUR output graphics appear on-screen and can be zoomed, panned, and
annotated using the mouse and keyboard. The 3-D graphics can also be twirled, i.e.
rotated to show various features. Of course the graphics can be captured by using your
computer's screen grabber to put copies of the graphics into other documents. Beyond
this, each graphic output can be regenerated and exported in any of six graphics formats
(.PS, .PLT, .DXF, .PNG, .GIF, and .JPG) so that you may include them into an even
wider range of documents and technical drawings. Moreover, whichever window is in
front (text or graphics) can be saved as a bitmap file of type .PNG by simply clicking the
QuickPNG item on the File menu. This lets you easily document your work as a series of
graphic bitmap window shots that are WYSIWYG: they respect size and cropping.

One very handy diagnostic is the general-purpose Run::Layout function. When you first
set up your optic and its illuminating beam, Layout can show you where the rays go --- or
don't go! After making some adjustments to the rays --- perhaps aiming them differently,
or perhaps enlarging an iris within the optic --- you may wish to zoom in on some portion
of the graphic for a closer look at ray-surface and ray-iris relationships. You may also
need to change your view position angle. Views are conveniently controlled by the
mouse: the wheel manages zoom, the left button drag manages pan, and the right button
drag manages vertical and horizontal twirl. For repeatability of views, the
Options::Layout function lets you specify your preferred view and save it for future use.

Figure 2-4 Oblique view of a four-element Tessar lens, produced using Run::Layout. The
graphic view can be zoomed in or out using the mouse wheel or function keys F7 and F8. The
vertical magnification can be zoomed with F5 and F6 and with the shift key + mouse wheel.

 12

The graphic view can be shifted up-down-left-right by dragging with the left mouse button,
and it can be rotated left-right and up-down by dragging with the right mouse button held
down. Customization features for the Layout function are at Options::Layout.

Another kind of display customization is ray color. Each ray can be assigned a color for
display purposes, in addition to a wavelength for tracing in refraction or diffraction
gratings. The display color for each ray shows up in layouts and in 2-D and 3-D plots.
For polychromatic traces you will most likely choose each ray display color based on
each ray's wavelength. In other cases you may choose each ray display color on other ray
properties: for example incoming ray direction or entrance pupil zone. Rays that are not
assigned any color are drawn using the default color: white if the background is black, or
black if the background is white. Background can be specified in the Options dialog for
each type of graphic. A stereoscopic display format is built in for use in Layout and
Plot3D screen graphics provided that you have red+blue viewing spectacles.

 13

Chapter 3: About Java

This edition of BEAM FOUR is a Java application. Java® was developed by Sun
Microsystems and others as a means for creating and distributing software that runs on a
wide variety of computers and operating systems, yet which offers a complete set of
graphical user interface (GUI) capabilities that today's users prefer. Moreover, Java
software acquires a look-and-feel characteristic of the user's computer and operating
system. What BEAM FOUR needs to run is a computer that is equipped with the Java
Runtime Environment "JRE" -- a specific collection of code libraries and entry points
that allow a Java application to use your computer's resources and GUI tools.

Java is likely already installed on your computer if you have a web browser. To discover
which Java edition you are running -- with no need to use a browser or Web access -- is
to open a command window to your operating system and type

java -version

and then press the Enter or Return key. The response tells you the installed version of
Java. BEAM FOUR’s GitHub distribution requires Java version 1.8.0. If your Java
version is older than 1.8.0, or if you don’t have Java installed yet, visit
http://www.java.com or your computer manufacturer's website to download a current
Java edition.

BEAM FOUR’s Help::About function tells you which edition of BEAM FOUR you are
running, and which version of Java your host is running it on.

The BEAM FOUR software is distributed as a Java archive file of type .jar, which is
accessed by opening the distribution CDROM or download .zip file. It is recognized by
your Java installation as an executable package. The download .zip file also contains this
owner’s manual in .pdf format, and a number of example data files. See Chapter 4 below
for instructions on installation and operation.

What is a .jar file? Technically called a “Java archive” file, it is basically a .zip
(compressed) file containing all the code needed to run the software, and instructions for
its loading and entry point. But what you need to know is this: double-click a .jar file to
run it. Your Java installation will know what to do with it.

Linux users: most distributions require that you manually set the .jar file properties to
make it runnable. To do this, right click on the .jar icon, choose Properties/General
“Open with JDK” and if offered “Set as default.” Then, on the Permissions tab, click
“Make the file executable.”

 14

Chapter 4: Installation

ELECTRONIC DISTRIBUTION:
The electronic distribution consists of a single file BEAM4.zip which contains the
program, this manual as .pdf, and the example files. Unpack the files to put the software
to work. Here’s how:

• Create a new folder or directory. Name it "RayTracing" or some such.
• Drag the downloaded .zip file from your downloads area into this new directory.
• Extract everything from the compressed .zip file:

o Mac OS-X users: double-click the .zip to reveal its contents, then drag
each file out of the .zip into “Ray Tracing.”

o ...or use your usual unzip utility.
• Linux users (Ubuntu, Zorin, etc): most distros require that you set the .jar file

properties to make it runnable. To do this, right click the .jar icon, choose
Properties/General "Open with JDK" and if available "Set as Default." Then on
Permissions tab, click "Make the file executable."

• Double click the .jar icon to run it.
• When BEAM FOUR starts, drag and drop files into its workspace to open them,

or use File::Open.

Should it be necessary, de-installation is even simpler: just haul the entire directory to the
trash. Your disk space will be recycled by your computer's operating system after you
empty the trash.

 15

Chapter 5: About Ray Tracing

A ray trace is a systematic computation of the progress of a ray of light through an optical
system. A good ray tracer will not only do the computations correctly but will also offer
a variety of diagnostics that help you understand and visualize the overall distribution of
rays. Originally carried out by hand calculation, ray tracing was historically one of the
very first numerical activities to be adapted to the computer when the early mainframe
machines became available in the 1950s. In 1986, Stellar Software's BEAM family of
products was introduced, initially for the early PC and later also for Macintosh machines
and their operating systems and UNIX/LINUX. Now, with this Java edition of BEAM
FOUR, ray tracing can be conducted efficiently on a wide variety of computers and
operating systems.

To conduct a ray trace you need:

• a description of the optical system to be traced;
• a description of how it is to be illuminated, i.e. the positions and directions that

the light rays have as they are launched towards the system.

If the incident light rays have more than a single wavelength, you are conducting a
polychromatic trace. If your optic uses refractive materials, you will also need:

• a lookup table giving the refractive indices of the optical glasses at each
wavelength of interest.

In BEAM FOUR each kind of input data is prepared using a text table editor and saved in
a text file. The contents of the .OPT, .RAY, and .MED tables are detailed in Chapters 9,
10, and 11. Examples of these tables are presented here in this manual and as distribution
files provided for your use. You can use the built-in editors, or your own.

BEAM FOUR output can be obtained in the form of tables of numbers and graphical
output. The tables can be computed during each ray trace and be updated with the
specific results that you specify in the data column headers. The graphical output is
called up with any of several Run menu choices: layouts, spot diagrams, and ray
histogram data are shown.

Powerful though it is, BEAM FOUR is a ray tracer and as such is limited to the optical
ray approximation in its analysis of optical systems. Mathematically speaking, a ray is a
purely geometric entity described by a point in space where the ray originates and by a
direction in which the ray propagates. A ray has no lateral extent, no angular extent, and
no polarization. It contains neither electric nor magnetic fields, nor any spectral intensity
distribution. We ascribe to each ray a characteristic wavelength, critical in computing ray
refraction and grating diffraction. Each ray can also be independently assigned a screen
color that governs how it will appear in Layout diagrams and spot diagrams. A ray is a

 16

mathematical abstraction of the real physical properties of light wave propagation and the
associated complexity of wave mechanics, boundary conditions, attenuation, absorption,
aperture diffraction, polarization, and the like. Ray calculations are useful when the
features of the optical system are very much larger than the wavelength of light. The job
of a ray tracer is to construct a sequence of geometric ray segments through a succession
of optical surfaces, with each change of direction obeying the appropriate law of
reflection or refraction at each surface. The usefulness of a ray tracer depends entirely on
the ray approximation being valid.

Ray tracing can supplant or replace geometric aberration theory. In aberration theory,
deviations from idealized Gaussian image points or wavefronts are written as algebraic
expansions into increasing powers of field angle and pupil location. Aberration estimates
are most useful for optics that are slow and narrow in field so that the expansions
converge rapidly and are dominated by the lowest power terms. If the system is
axisymmetric and the pupil is filled, the aberrations divide neatly into those that affect
image quality (chromatic, spherical, coma, astigmatism) and those that affect image
location (defocus, field curvature, and distortion). Aberrations help guide the design
process because they have differing sensitivities to stop location and lens bending. In
contrast, computer ray tracing deals with a more general class of optics, including those
with no particular symmetry or those with complicated pupil shapes.

Electromagnetic wave theory is far more powerful, but more complex, than geometrical
ray methods. Electromagnetic solvers deal explicitly with boundary conditions,
polarization, diffraction, interference, attenuation, and vector fields throughout
illuminated volumes. They implicitly include multipath phenomena inherent in optical
resonators, laser cavities, waveguides, and fiber optics. Efficiencies of reflection,
refraction, and transmission can be modelled in an exact way.

Ray tracing is not capable of determining the detailed electromagnetic fields within an
optic, but it can give a relative estimate of the intensity distribution of light based on the
density of ray hits in a spot diagram. In ray tracing the relevant approximation is to
describe each portion of a wavefront as being a localized plane wave. Converging rays
become increasingly concentrated as they proceed towards a focus, and increasingly
diluted as they proceed away from a focus. A measure of the intensity of the beam is this
degree of concentration: the number of rays per unit cross sectional area. The best way to
convey this information visually is with a spot diagram (see Chapter 14, "Plot 2D" and
Chapter 15 “MultiPlot”).

Fortunately most optical design tasks can be adequately treated using a ray tracer because
most optical systems are very much larger than the wavelengths λ of light they convey.
Indeed, even for a fully diffraction limited optic, ray tracing is commonly used to
evaluate its geometrical aberrations, independent of diffraction. If the RMS geometrical
wavefront error is less than 7% of a wavelength, then the optic is said to be highly
corrected and its performance is close to the best that may be achieved for that aperture.
This edition of BEAM FOUR has features that compute and helps you minimize
geometrical wavefront errors.

 17

Ray tracing is scale independent. Any convenient (but consistent!) unit of length can be
used to measure the positions of surfaces and rays. Meters, millimeters, and inches are
popular choices. The unit of surface curvature is always the reciprocal of the unit of
length, so that curvature is always reciprocal to radius of curvature.

FURTHER READING

For the user wishing to become familiar with optics, optical devices, and the many ways
to discuss and evaluate image formation, the introductory text by E. Hecht "Optics" (4th
Edition, Addison-Wesley 2001) is highly recommended.

A more advanced text for the technical engineer is "Modern Optical Engineering" by
W.J.Smith (4nd Edition, Mc-Graw-Hill 2008). He presents the broad subject of optical
design and engineering, with the references, formulas, and worked examples showing
how image quality can be evaluated and quantified in theory and in the laboratory.

The mathematical foundation of many ray tracing programs, including BEAM FOUR, is
the one developed by G.H.Spencer and M.V.R.K.Murty: "General ray-tracing
procedure," J.Opt.Soc.Amer. 52#6 (672-678) 1962. In just 7 pages they lay out the
whole method.

A practical engineering guide to optical system specification, analysis, design, and testing
is "Optical System Design" by R.E.Fischer and B.Tadic-Galeb (McGraw-Hill, 2000).

The mathematical foundations of optics are thoroughly explored by M. Born and E. Wolf
in "Principles of Optics" (7th Edition, 1999). A particular strength of this reference work
is the careful derivation of aberrations from electromagnetic wave theory.

A compendium of detailed lens designs, with discussions, advantages, disadvantages, and
design strategies is presented by W.J.Smith in his "Modern Lens Design" (2nd Edition
McGraw-Hill 2005). Here, Smith gives a comprehensive inventory of classical and
modern lenses for cameras, eyepieces, telescopes, magnifiers, relays, etc.

A useful guide to aberrations is the book “Aberration Theory Made Simple” by V.N.
Mahajan (SPIE, 1991) who extends Seidel aberrations to include centrally obscured
annular pupils and Gaussian apodized pupils.

Finally, the publications and conferences of the Optical Society of America (OSA) and
the Society of Photo-Optical Instrumentation Engineers (SPIE) are valuable resources.
Visit them at www.osa.org and http://spie.org.

 18

Chapter 6: COORDINATE SYSTEMS

Optics coordinates: The simplest optical systems are coaxial. All their optical elements
are lined up along a common axis. Following Born & Wolf, we refer to this common
axis as the Z axis. The X and Y axes are perpendicular to Z and to each other. The
origin of the coordinate system is the point X=0, Y=0, Z=0. We shall use these upper
case letters to describe coordinates measured in this overall reference frame or "lab
frame." For the simplest coaxial system, each optical surface has a location along the Z
axis where its surface intersects the axis, but each surface's X and Y coordinate locations
are both zero.

In a more complicated optical system, the surfaces need not be lined up in any particular
way, nor need they be oriented the same way. The point at which each surface cuts its
own axis of symmetry is called the vertex of that surface. We describe the location in
space of each surface by the coordinates (X,Y,Z) of its vertex, measured with respect to
the lab system origin.

Optical surfaces can be arbitrarily oriented in space. Starting with a surface aligned with
the lab coordinate frame, three successive rotations describe its orientation:

• Tilt pivots a surface around its +x axis (same direction as lab +X axis);
• Pitch then rotates it around its own (now possibly tilted) +y axis;
• Roll rotates the surface about its own tilted and pitched +z axis.

Tilt, Pitch, and Roll are specified in degrees. For axisymmetric surfaces (paraboloids, for
example) Roll has no effect. Roll is a significant parameter only for non-axisymmetric
surfaces such as cylinders, torics, and diffraction gratings, and surfaces whose edges are
defined as square, rectangular, or elliptical rather than circular.

The figure below is an oblique view of the consecutive rotation angles Tilt, Pitch, and
Roll being successively applied to a simple flat square surface. The square frame at the
lower left lies in the (X,Y) plane and is not tilted. Going towards the upper right, the next
frame is tilted by +30 degrees. The next frame is tilted and also pitched by +30 degrees.
The final frame is, in addition, rolled by +30 degrees. (This figure is a layout of the four
surface optics file ANGLES.OPT that ships with this product.)

As with X, Y, and Z, we use upper case initial letters T, P, and R to emphasize that these
rotations are successively applied starting from the lab frame.

Alternatives to this (Tilt, Pitch, Roll) system are described in Appendix 2.

 19

Fig 6-1 Oblique view of a square surface that is initially not rotated (lower left). Tilt of +30
degrees turns it about its x axis which is the same as the lab X axis, here vertical. Pitch then turns
it about its own y axis. Finally Roll rotates it about its own z axis, its own axis of symmetry as
shown in the upper right.

Ray vertex locations: A ray propagates through an optical system in a sequence of
straight line segments. Each sequence begins at a point in space specified in Cartesian
coordinates X0, Y0, Z0 that you input to the ray tracer via your .RAY table. A ray
changes direction only at points where it has intercepted an optical surface. Such an
intercept is called a ray vertex, in analogy with the vertex of a polygon or polyline. A
complete output trace of each ray start is the sequence of its successive ray vertices. In
the starting (lab) frame, we denote these ray coordinates with upper case letters:

 X1, Y1, Z1 at the first surface;
 X2, Y2, Z2 at the second surface; etc.

It is also sometimes useful to describe a ray vertex location in the frame of that optical
surface, rather than in the lab frame. For this purpose we use the lower case symbols
x,y,z,u,v,w so that for example y2 describes the y-coordinate value for a ray vertex at
surface 2 measured in the local (x,y,z) frame defined by surface 2. The abbreviation "f"
or "final" can be used to indicate the final surface number of a trace: for example Xfinal
means X8 if there are just eight surfaces being traced, or X9 if there are nine.

Throughout BEAM FOUR, these coordinate descriptors X5, y2, etc are available to use
in your .RAY tables, graphical display axis definitions, histograms, and the like. You
may use these descriptors as column heads in a ray table where you'd like to see the
computed numerical values. You may also use them in the dialogs that set up the plots
and graphs. For example you may set up a plot of all each ray's X5 value plotted as a
function of its y2 value, or see a histogram of all the ray table's Xfinal values.

 20

Ray segment directions: The direction of each ray segment is described by three
numbers U, V, and W. These are the X, Y, and Z components of the unit-length vector
that points along the ray. They are commonly called direction cosines due to the fact that
each number is the cosine of the angle between the ray segment and each coordinate axis.
The numerical values of U, V, and W always lie between -1 and +1. A value of -1
indicates that the ray is headed opposite to the axis, while +1 means the ray is heading the
same way. Zero of course indicates the ray is headed at right angles to the axis. Because
a ray segment has to be pointed somewhere, it has unit length, U2 + V2 + W2 = 1. This
condition is established using the ray start information that you supply in your RAY table
(see below) and continues to be true throughout a ray trace.

• Example: a ray headed towards +Z has (U, V, W) = (0, 0, +1).
• Example: a ray headed towards -Y has (U, V, W) = (0, -1, 0).
• Example: a ray headed 37 degrees away from the +Z direction towards the +X

direction has (U, V, W) = (0.6, 0.0, 0.8).

The ray directions change, of course, as a ray propagates through an optical system. The
numbering of the direction variables is the same as the numbering of the surfaces that
launched each segment. In particular, the zero suffix identifies a starting direction for a
ray, and therefore indicates input data that you provide to the ray trace process. So, W0
is the Z-component of a ray's direction as it starts its journey towards the first optical
surface. Surfaces 1, 2, 3... are the computed directions of rays departing from surfaces 1,
2, 3... and are therefore output data from the trace and will be filled in by BEAM FOUR
whenever the InOut ray trace function is chosen. For example, U5 describes the lab
frame X component of the ray direction as it leaves surface 5. Vfinal is V at the final
surface (both arriving and departing: never different at the final surface!).

Frequently you will want to read out a ray direction in the coordinates of the surface that
launched it. This coordinate frame will usually differ from the lab frame: it will be
translated from the lab origin, and it will possibly be tilted, pitched, and rolled. In the
surface frame we use the lower case letters (u, v, w) again, combined with a number
describing which surface is the source of the ray segment of interest. So, for example,
u5 is the component of a ray's direction projected onto the x-axis surface of surface #5, as
the ray departs surface #5.

In addition to these ray quantities, an optical path output variable is available to the
.RAY table and graphical output functions. Optical path is a cumulative measure of the
distance travelled on a ray's journey through your optical system. Each leg's linear length
is multiplied by the refractive index of that leg. Optical path is proportional to the time
delay experienced by a photon propagating through your optic. The usefulness of this
statistic is not in its average value over a group of rays, but rather lies in its variation
among rays that link an incoming wavefront to an outgoing wavefront. A well corrected
optic will have a variation in optical path that is only a fraction of a wavelength, when
considering a group of rays sharing common object and image points. The optical path is
set to zero where each ray starts. It accumulates for each ray as the ray propagates from
one surface to the next. To use this diagnostic, access the computed values of P1,

 21

P2...Pfinal at the various surfaces graphically by using P1 or P2 or Pfinal as a variable
name to be plotted, or by putting field headers "P1" etc into your .RAY table. See
Chapter 10 for an example.

Closely related to optical path is wavefront error, abbreviated WFE. This quantity is
computed from each ray trace exactly like optical path, but instead of representing the
delay between ray start and ray finish surfaces, it includes corrections for ray group
inclination and curvature both for incoming and outgoing rays. Furthermore it subtracts
away the average optical path for every group of rays, so only the ray-to-ray differences
survive. In this way WFE represents the deviation of each ray from an idealized
spherical or planar incoming wavefront and an equally idealized spherical or planar
outgoing wavefront. This quantity then represents the variation in delay or path between
the ingoing and outgoing wavefronts.

Total path delay has no effect on optical performance, but variations in this delay over the
pupil have important consequences. Specifically, these variations directly show the
degree to which the optic can be regarded as diffraction limited. It is commonly
regarded that an optic whose root-mean-square WFE is less than 0.07 waves is diffraction
limited and is therefore capable of essentially ideal performance.

WFE is a computed diagnostic of your optical system that BEAM FOUR provides in two
ways: as an output datum on a ray-by-ray basis in your ray table, and in diagnostic plots
such as Plot2D, Plot3D, and histograms.

Moreover, WFE minimization is by default built into the AutoAdjust feature. To design
an optical system whose WFE is minimized, there is no need to create a goals column for
WFE --- those goals are always zero. Instead, install a WFE field and remove any other
goal fields or goal field headers that may be present in your .RAY table. AutoAdjust will
remain active provided you have adjustable optics parameters (one or more has a "?" tag).
The AutoAdjust action is then available to you to help you tune an optic for least WFE.

Because WFE is a measure of the variation between rays within a group having a
common object point and image, it is important to fill your pupil with a representative set
of rays if the computed WFE is to be a useful diagnostic. The default assumption is that
all the rays in your .RAY table contribute to a common wavefront. If this assumption is
correct, and if your pupil is properly filled, then the WFE diagnostic will be accurate and
useful without further elaboration.

On the other hand if there are several field points within your .RAY table, then the
default assumption is incorrect and a bit of intervention is needed. In the WFE field of
your .RAY table, provide tag letters "a" ... "Z" to each ray’s WFE field to indicate the
object group to which each ray belongs so that all rays tagged “a” belong to one
wavefront, etc. The total root-mean-square WFE is calculated from the deviations in
WFE within each group while ignoring differences between the groups.

 22

Chapter 7: The File Menu

First stop on the BEAM FOUR menu bar is the File
menu which centralizes the file reading and writing
activities. Items that are grayed out are temporarily not
available, either because some key information is
missing, or because the input file has already been
loaded. When you start the program, all the file input
menu items ("NewOptics" etc) are available but none
of the file writers have any output to deliver and are
therefore grayed out. You may open an existing optics
file by selecting File::OpenOptics or create a new file
by selecting File::NewOptics at the BEAM FOUR
menubar. Drag-and-drop is also supported, so that to
load an optics file you may drag it from its on-screen
directory and drop it into the BEAM FOUR workspace.
The other data file types (Rays and Media) work the
same way. As you work, BEAM FOUR maintains a
list of up to ten most recent files, and offers these via
this menu. After you have loaded an optics table, for
example, NewOptics, OpenOptics, and Recent Optics
become grayed out because only one optics table can be
loaded at any given time. To conduct a ray trace you
will need an optics table to describe your optical system
and a ray table to specify how you want it illuminated.
If you just want to look at a layout of an optic, and don't

care about rays, you can load the .OPT alone and Run::Layout provided that each optical
surface has a declared Diameter specifying the size of each drawn surface. (Diameters
aren't necessary for Layout if you load your .RAY table, because the rays themselves can
guide Layout's diameters.)

The default keyboard shortcuts use the control key in Windows environments and the
command key on the Mac OS, as shown in the menu.

The tables are designed to handle numerical data. Three numerical formats are
supported: the “decimal point period” floating format common in the U.S. and U.K, the
“decimal point comma” international decimal numerical format used elsewhere, and the
“e” or “E” exponential notation. BEAM FOUR automatically recognizes all these
formats on input. To specify one or another of these in output fields, put a period, or
comma, or “e” or “E” into the ruler line governing the field. Examples are shown in the
following chapters.

Data tables are saved using the File::SaveTable and File::SaveTableAs menu items.
The first of these saves the file with the same filename as it had when loaded or when

Fig 7-1 The File Menu.

 23

most recently saved. SaveTableAs gives you a dialog where you may specify a new
destination directory and a new file name. Save has the keyboard shortcut Control-S.
Save and SaveAs are grayed out when there is no data table currently selected.

The File menu offers a window-capture quick-save feature that lets you document your
work as a sequence of window-specific screen shots in PNG format. File::QuickPNG is
enabled when any window, text or graphics, is currently selected (i.e. highlighted).
Choosing QuickPNG triggers a bitmap capture of the selected window, and saves it to
disk with a filename that you specify in a popup dialog. The .PNG extension marks it as a
Portable Network Graphics compressed bitmap format compatible with a wide variety of
graphics software and browsers. To review any of your captures, double-click it and your
browser or default viewer application will display it.

For some purposes you will want to save your graphical output as a file, either for high-
resolution reproduction or for use within CAD programs. BEAM FOUR supports three
of the most popular graphics formats: Postscript, Plotter, and DXF (both 2-D and 3-D).
To use this feature, first go to Options::CAD and choose your desired output format and
orientation (Landscape or Portrait) and click OK. Then, later, with your specific graphic
window selected (clicked, so that its frame becomes highlighted), click File::WriteCAD.
This will give you a File:Save dialog to choose your destination directory, file name, and
extension. You can set up your preferred Options::CAD at any time, but the menu item
File::WriteCAD is grayed out until you have a graphic that is on-screen and selected.

The File::WriteHisto menu item lets you write an ASCII text file listing the numerical
contents of a 1-D histogram, or 2-D histogram, or MTF plot, whichever type of plot is
currently selected in the main window. This feature provides the histograms developed
within BEAM FOUR for your use elsewhere. The feature’s menu item is grayed out if
there is no histogram currently selected.

The File::Print/PDF menu item lets you print any selected text or graphic window. A
printer dialog will pop up. It lets you specify a local or a network printer and set up its
printing format, paper supply, etc, as permitted by your printer and operating system. It is
grayed out if no window is currently selected. To create a .PDF file, click the PDF button
built into the Mac OS X print dialog, or in Windows scroll your printer selector to your
installed PDF file creator software.

Finally, File::Quit exits the program. It is never grayed out but if you have unsaved work
in any of your optics, rays, or media data tables, a reminder will pop up allowing you to
save your work.

 24

Chapter 8: The Edit Menu and the Editor

Because the main avenue of input to BEAM FOUR is through its data tables, it is
obviously important to have an easy-to-use editor built into the application. The editor
that is part of BEAM FOUR has many features that you will find familiar from having
used simple text editors for email and other tasks. Here in BEAM FOUR you normally

type in overwrite “Table” mode, mark text
with the mouse, cut, paste, delete, and copy
to/from the clipboard using complete lines or
records. There are some added features
designed specifically for working with tables,
where it is important to keep things organized
into columns. For this reason, in Table mode,
characters don't insert, they always overwrite,
leaving rightward fields unaffected. Also,

deleting a character doesn't pull the entire line leftward, but instead acts more like
backspace: it overwrites the character left of the caret. Mouse mark-and-drag marks
entire records, not pieces of records, so that the integrity of the table columns will be
maintained under cut, paste, copy, and delete. The tab key is similarly field-aware: tab
moves your caret rightward to the beginning of the next field and shift-tab moves
leftward to the beginning of the previous field, without disturbing the table.

Finally there are special combination keystrokes that are specialized for table editing.
These keystrokes act on the data field at the caret position and help you lay out your data
tables. They serve to narrow a field giving it fewer characters in the table, or widen a
field to allow for more digits, or split a field into two, or copy the contents of a field
downward into the record below. (Mac users: Mac OS reserves the function keys
F1...F12 for other functions, and the Alt key is the same as the Option key.)

• F7 or Ctrl/Cmd-LeftArrow: narrow the field
• F8 or Ctrl/Cmd-RightArrow: widen the field
• F9 or Alt-RightArrow: split the field into two
• F10 or Alt-DownArrow: copy the field into the cell below
• Ctrl-Alt-DownArrow: copy the field all the way to the bottom
• Ctrl/Cmd Z: undo & redo the most recent change.

If you have a group of neighboring fields you want to copy down the page, temporarily
delete the ruler line colons that separate the fields.. (This tricks the editor into thinking it
is just a single wide field.) Then copy the whole group using Alt-DownArrow. Then
replace the colons in the ruler line to reestablish the separate fields.

On-screen reminders of these special table editor functions and keys pop up when you
select Options::Editors or when you choose Help::Special Keys.

Fig 8-1: Edit menu: Windows (left)
and Mac (shown on right).

 25

Options::Editors lets you set up how the editor works. First and foremost, the editor has
two distinct modes. The Table mode is best for keeping all the data aligned in the tables;
you can recognize it by its blinking block caret. Alternatively the Text mode works more
like a text editor: it inserts characters at its vertical-bar caret, and pulls characters left
when deleting characters. You might want to use this mode to clean up tables that have
been mangled by text processing elsewhere.

In Options::Editors, the first few checkboxes allow you to show or hide the directory path
of a file that each editor is editing. You can choose to show or hide the row and column
location of the editing caret. The appearance of text is controlled by choosing the editor
font point size and boldness, and the screen pixel smoothing can be turned on or off, for
whichever looks better on your display.

Figure 8-2: The Options::Editors dialog
box that lets you customize the editors. At
the top are reminders about the four
special keystrokes used for managing your
table layouts and a reminder about
inserting or duplicating lines of text. The
usual editor mode is Table mode, but there
is an alternate Text mode that allows insert
and delete. The checkbox "Show file
paths?" lets you turn on or off the long
filename format, while "Show row & col"
controls the display of the editor caret
location. (Editor rows for title, headers,
and ruler are abbreviated T, H, and R.)
The function "Expand commas?" lets you
read in a comma-delimited text file and
have it parsed into the successive fields
defined by your headers and ruler. The
"Default fieldwidth, chars" box lets you
specify the initial field widths when a new
editor is invoked with the File::New
function. When editor contents are copied
to your clipboard, you can specify keeping
the delimiter colons if your copy
destination is a text document, or tabs
which are appropriate for copying to a
spreadsheet. Finally you may specify your
preferred font size and appearance with the
bottom three options.

 26

Options::Editors offers you a choice of how its text will be transferred onto the
clipboard when it is marked and copied out to other software. In the native table format,
colons separate the data fields to help you distinguish where they start and stop. So if
you are copying text onto the clipboard to insert it into a document for visual use, choose
"Colons, for text” since this choice will preserve the visual context. However, the
spreadsheet world is different. There, data fields are automatically distinguished by
nonprinting (hence invisible) tab characters. So if your clipboard transfer is destined for
inserting data into a spreadsheet, choose the option "Tabs, spreadsheets" so that the fields
will be automatically recognized and properly parsed into data columns in the destination
spreadsheet computation.

Before ending each editing session, remember to update the control number in the upper
left hand corner of your table, which is the very beginning of your title line. This control
number should be between 1 and 999. It specifies how much of the table BEAM FOUR
should process: how many optical surfaces, rays, or refractive media you want evaluated
or processed.

Obsolescence and your intellectual property: We've all experienced that sinking feeling
upon discovering that engineering work from years ago has become inaccessible owing to
data format changes by CAD, spreadsheet, and word processor standards. With BEAM
FOUR this kind of issue is not so serious a problem: all your files are native plain ASCII
characters. ASCII files are the closest thing the digital world has to a universally legible
format. The data files you create in BEAM FOUR will likely outlive any software you
currently own. Nonetheless we urge you to keep hard copy printouts of important files,
because digital storage media and hardware that reads them are not particularly long lived
– except perhaps in the Cloud. Who today can read a seven-track computer tape or an
eight-inch floppy disk, even if its files are simply strings of ASCII characters?

 27

Chapter 9: Optics and Optics Tables
To describe an optical system, we use a list of surfaces, written in the same sequence that
light will arrive at each one. These lists are called optics tables. They are simply ASCII
text files with extension .OPT. You may open an existing file by selecting
File::OpenOptics or create a new file by selecting File::NewOptics at the BEAM
FOUR menubar. Drag-and-drop is also supported, so that to load an optics file you may
drag it from its on-screen directory and drop it into the BEAM FOUR workspace. In
either case an editor window will open on screen. You may edit optics files using the
keyboard, the mouse, and the Edit menu commands that send individual file records to
and from your computer system's clipboard. Since they are ordinary text files you may
also edit them with any other text editor you might have on hand.

Optics tables are organized on a line-by-line record basis. You may cut and paste
individual records, or groups of records, using your computer's clipboard and the usual
Edit commands: Cut, Copy, Paste, Delete, and SelectAll. Optics files are saved to disk
using the File::Save or File::SaveAs commands. Files with the needed information can
be imported from other software. Because they contain only standard ASCII characters,
they are platform-independent. And of course via the clipboard you may freely copy and
paste them into other documents such as email, reports, and spreadsheets.

Because the optics table is the main avenue of input to BEAM FOUR, it's important to
understand how the table is organized. Dozens of examples are furnished as part of this
distribution as files having extension .OPT.

An optics table has a three-line preamble followed by a list of the optical surfaces in the
same order that light will encounter them. (If a surface is encountered twice by each ray,
it must be listed twice.) Almost all the necessary optical surface parameters have likely
default values, so even though there are upwards of 100 possible parameters per surface,
you will usually need to specify only a few.

Example 9.1 To get started, look at Fig 9-1 below, which shows a very simple biconvex
lens (filename: LENS.OPT) being illuminated with a diverging fan of rays (filename:
LENS.RAY). A quick look at the table shows that it defines three optical surfaces: a lens
surface, another lens surface, and a final surface whose type is ignored: it has no action
since the trace stops there. The refractive indices approaching each surface are listed in
the leftmost column: 1.00 (or equivalently, blank) represents air; 1.662 is the refractive
index of the lens material, and the final index is again air. The surfaces are located along
the Z axis at 2.8, 3.2, and 6.0 units. (Units don’t matter in geometric ray tracing; they
could be inches, millimeters, whatever, as long as they are consistent.) The curvatures of
the front and back lens surfaces are +0.5 and -0.5 reciprocal units, zero being flat. The
surfaces are spherical because no conic, toric, or polynomial entries are present.

 28

Fig 9-1 Top: Example of a simple optics table. The preamble is the top three lines: a title line, a
row of field headers that define the table contents, and a ruler line whose colons delineate the data
fields. The colons below the ruler line colons are there to guide your eye (and your typing!).
There are three optical surfaces here (see upper left corner) --- by type they are a lens surface,
another lens surface, and a final nameless surface. The final surface need not have any declared
type since there is no ray action to perform when the ray stops. Below: a layout diagram of this
LENS optic, illuminated by a .RAY file with 14 ray starts (see Chapter 10). Of these, the top two
and bottom two starts fail to intercept the lens and are shown as dotted ray start segments.

We now turn to a more detailed description of each part of the optics table, and follow up
with a few further examples that illustrate some of the features of BEAM FOUR.

Title line (Line #1): This top line of a table has two purposes. Its leftmost item entry
must show the number of successive optical surfaces that are to be traced. This can range
from 1 to the maximum allowed, 99 for optics, 2999 for other tables. The remainder of
the top line can carry any sort of information. In our examples, we use it to prominently
display the filename of the table. Other information may be kept here too: author's name,
project, revision number, revision date, and so forth. The example shown here specifies
that three optical surfaces are to be read by BEAM FOUR in computing its ray trace: two
successive lens surfaces plus a final surface. If there were additional lines of data in the
table, beyond the number of records specified in the title line, they would be ignored by
BEAM FOUR. Having this control number available makes it easy to stop the trace
partway through a complicated optic: just set the control number at the upper left hand
corner to equal to the surface number where the trace is to stop. Leading spaces are OK.

This arrangement also makes it easy to use space below the data records for additional
text information about the project. The editor can handle lots of text, so there is a bit of
room for commentary and design notes below the active surface listing. This way, brief
text notes can be kept with the technical optics definition as a project develops.
However, changes to the field widths applies to the entire table, so before using this
notation feature be sure you are happy with your field width assignments.

 29

Header line (Line #2): Optics tables are fully programmable. The individual data
columns can be set up in any way that makes sense to you. BEAM FOUR of course needs
to know what specific information the columns contain. The column headers in Line #2
convey this information, by showing a column header word or abbreviation. Leading and
trailing blanks in these field abbreviations are ignored. Usually only the first one or two
characters serve as a sufficient indicator to BEAM FOUR, but for easy human
recognition you may prefer to enter complete header words. For example, to abbreviate
"index of refraction" approaching a surface you may simply type "I" or "i" or "Index." A
list of abbreviations and meanings is given below.

In the LENS.OPT table shown previously, the leftmost data field has been reserved for
refractive index information about the medium approaching each surface. An empty
data entry in this field defaults to 1.00, the refractive index of air.

Of the many data field titles understood by BEAM FOUR, you usually need to use only a
few. Every data field has a reasonable default value that is applied when its field title is
missing, or when its field title is present but the datum in the table is blank. For example
an all-reflective optical system is one that has no need for refractive index information
because there is no refraction. This can be specified by putting the value 1.00 into the
"Index" fields, or by leaving them all blank, or omitting the "Index" field entirely.

In the same spirit, the default location of every optical element is the origin, {XYZ} =
{0,0,0}. So if your optical train is coaxial, so that for example all the element vertices lie
along the Z axis, then you need not specify any X or Y vertex locations and you will not
need the X or Y field titles. A plano optical surface has no curvature, and zero is the
default value for curvature, so again you need specify only your curved surfaces.
Similarly if you are not using holographic optics, or polynomial aspheres, or Zernike
polynomials, or other exotica, you need not specify (or even know about) those
parameters and your optics table need not have any field headers describing them.

Ruler line (Line #3): The third line of an optics table is a ruler that shows how your data
columns are separated. The hyphens in the row make the table look tidy, but actually
BEAM FOUR ignores the hyphens. It is the colons in this row that tell BEAM FOUR
how to parse the fields of the table.

Two other symbols can be placed into any ruler field to format the output from the
program when an item in a field is being AutoAdjusted. A period or comma lets you
show where you want BEAM FOUR to locate its decimal point when it is delivering its
numerical output data to the table. Alternatively, the letter "e" or "E" anywhere in a ruler
line field lets you stipulate than when BEAM FOUR displays a computed value, it should
use exponential "e-notation" rather than regular decimal notation. There is no need to use
periods or E-notation indicators for your data input: BEAM FOUR handles all reasonable
data reasonably.

 30

In the file LENS.OPT shown earlier, the first data column has the header "Index" which
reserves this column for the specification of refractive index in the medium approaching
each surface. An "Index" datum should be left blank or set to 1.00 to indicate that rays
approaching that surface travel through air (or vacuum, if you are working in the
ultraviolet where refraction is measured that way). A numerical entry under this header
(for example "1.662") is taken to be a refractive index value that applies to all rays
independent of any wavelength information supplied with each ray. All nonzero
numerical values (including negative numbers! BEAM FOUR handles negative refraction
as well as ordinary positive refraction) are valid and will be properly refracted. A zero or
blank entry is interpreted as an index = 1.000.

Before exploring further examples of .OPT files we'll cover the three general kinds of
information that these tables convey: action headers that control with the ray tracer
action will be at each surface; geometry headers that describe the location, orientation,
and shape of each surface; and periphery headers that govern the physical boundaries of
each surface within its vertex frame of reference. See Table 9-1 below.

Any data in a field with a blank header, like fields 6 and 7 of LENS.OPT above, will be
ignored by BEAM FOUR. This feature lets you temporarily turn off an entire column of
input data, so that they reverts to their default.

Action headers let you control what action the ray tracer will take when encountering
each optical surface. The governing header is "Type" or simply "T" beneath which you
specify each surface as a lens, a mirror, an iris, or a retroreflector. Alternative headers
"M" and "L" are synonyms of "Type". The default surface action is refraction, so if you
have an all-refractive optic, you won't need this header or field. But if you want to
include nonrefractive irises or other elements, you will need it. Major types available to
each surface in your .OPT table are "L" or "l" for “lens” (including transmission
gratings), "M" or "m" for “mirror” (including reflection gratings), "I" or "i" for iris (no
change in ray direction but defined maximum and/or minimum radii for ray passage). A
fourth type of surface is "R" or "r" for an ideal retroreflector that simply reverses the
direction of each ray (unphysical, but handy for locating virtual foci). A phantom surface
is one that does not affect rays but merely provides a reporting point for ray coordinates;
if you need one, use a lens surface with no change of refraction, or an iris with no
declared diameters. A coordinate break surface pair CBin & CBout interrupts and
resumes ray propagation at a different location or orientation. A bimodal surface (mirror
or two lens surfaces) type is available that allow those rays that miss an element to
proceed onward to the following surfaces in your optics table listing.

The remaining action headers let you supply additional information about the chosen
action. For a lens surface, the refractive index of the medium approaching the surface is
1specified in an "Index" field (a field headed with the word "Index" or "I" or "i"). For
monochromatic traces this can be a numerical value like 1.665, or for polychromatic
traces it can be a glass name chosen from the list of media in your .MED table.

1

 31

Table 9-1: Optics Headers and Input Field Abbreviations

Surface Action headers …. and the data in their fields
Type, M, L lens, iris, mirror, retro, lensarray, scatter, CBin/out, four kinds of

bimodal surfaces bim, bif, bir, bit; default= lens.
I, i index of refraction in the medium approaching the surface; default=1.0
Gx, Gy diffraction grating groove density in x and/or y direction
O, o, order... order of diffraction for each diffractor, all rays; default = 0
VLS1 ... VLS4 varied line space grating polynomial coefficients; default = 0
HOEx1... HOElam holographic optical element constants (see Appendix 5)
Scat, scatter… RMS Gaussian forward scatter angle in degrees; default=0
Nx, Ny Number of array elements along x and y axes
Surface Geometry headers …. and the data in their fields
X, Y, Z lab coordinates for vertex of each surface
T, P, R lab coordinates for tilt, pitch, roll angles in degrees
C, curv, ... general curvature of a surface; value = 1/radius of curvature

 * positive value: curved towards local +z direction
 * negative value: curved towards local -z direction
 * zero or blank: a flat (plano) surface, default.

Asph, Ax, Ay... asphericity: departure from spherical profile = Shape - 1
 * default value = 0, a spherical surface
 * Ax and Ay specify the two biconic asphericities

S, s, shape, ... shape: departure from parabolic profile = Asphericity + 1
 * default value = +1, a spherical surface
Use A, or S, or neither (default = sphere), but not both.

Cx, cx Forces toric (without Ax) or biconic (with Ay and Cy)
Curvature "Cx" is in xz plane with cylinder axis in y direction.

Cy, cy With Cx, forces biconic curvature; use with Ay

A1, A2, A3,...A14
polynomial coefs

* surfaces of revolution: coefficients of r, r2, r3,r14

 * toric surfaces: coefficients of |y|, y2, |y|3, y14
Zern0, …Zern35 Zernike polynomial coefficients, see Appendix 3. These require a

specified Diameter for the Zernike surface.
Surface Periphery headers …. and the data in their fields
D, Dia, Diam... Diameter of the outer periphery of the surface
Dx, Dy Diameters for x and y axes separately
d, dia, diam... inner diameter for blind center of an optical surface or iris
dx, dy inner diameters for x and y axes separately
OffOx, OffOy offset in x or y for outer periphery from vertex location
OffIx, OffIy offset in x or y for inner perphery from vertex location
F, f, form, figure field specifying square/rectangular periphery;

 * "S" indicates square or rectangular outer periphery,
 * "s" indicates square or rectangular inner periphery,
 * "Ss" or "sS" indicates both peripheries square or rectangular.
 * default = round (circular or elliptical).

Ns, Nspi, Nspider number of spider legs in an iris (default = 0)
Ws, Wspi, Wspider width of spider legs in an iris (default = 0)

 32

The action fields "Gx" or "Gy" let you convert an existing lens or mirror surface into a
parallel groove diffraction grating in transmission if it’s a lens, or reflection if it’s a
mirror. Data in these fields will be the numerical groove density in the local-frame x or y
directions, expressed in units consistent with your ray wavelengths (grooves/micron if
your wavelengths are in microns). The field "Order" or simply "O" describes the order
of diffraction to be evaluated, usually a small positive or negative integer or zero if you’d
like it turned off. The related action fields "VLS1" through "VLS4" let you convert a
uniformly ruled grating into a varied line space grating, with polynomial spatial variation
coefficients of x1, x2, x3, x4 for Gx, or similarly the first four powers of y for a Gy grating.
Additional details for diffraction gratings are presented in Appendix 4.

The action fields "HOExxx" let you set up a holographic optical element. These fields
are explained and illustrated in Appendix 5 "Holographic Optical Elements."

Geometry headers let you set the position, orientation, curvature, and other properties of
each surface. The headers X, Y, and Z let you locate the vertex of each surface in space,
using its lab frame coordinates. T, P, and R specify its tilt, pitch, and roll angles in
degrees, as explained in Chapter 6 "Coordinate Systems". The default values are all zero,
so if you have a simple coaxial optic (nothing decentered or tilted) you need not use X,
Y, T, P or R; simple string your surfaces out along the Z axis.

The profile header "C" or "Curvature" lets you specify the curvature of each surface in
your optic. The numerical value of curvature is 1/(radius of curvature) and its units are
the reciprocal of the length units in which your X, Y, and Z coordinates are expressed.
For a flat (plano) surface, the curvature is zero. This is the default value. For a surface
that curves towards the local +z direction, the curvature sign is positive, and is negative
for a surface curving towards the -z direction. Spherically curved surfaces are the most
common surface profiles in optics, and the spherical profile is the default. The equation
for the spherical surface departure from a plane is

z = C ⋅ r2

1+ 1−C2r2

where r2=x2+y2 and C is the curvature of the surface: positive for a surface curving
towards +z, and negative if curving towards –z. Zero curvature is a flat surface.

Aspheric profiles of several kinds are supported by BEAM FOUR. The simplest of these
are the conic sections of revolution --- a group that includes the ellipsoids and the
hyperboloids as well as the special cases of the paraboloid and the sphere. To gain access
to these surfaces, introduce a header "Asph" for asphericity into your optics table.
Asphericity measures departure from a sphere: Asph<-1 are the hyperboloids, Asph=-1 is
the paraboloid, -1< Asph < 0 are the prolate ellipsoids, 0 is the sphere, and Asph>0 are
the oblate ellipsoids (see Appendix 1). The equation for this surface is

z = C ⋅ r2

1+ 1− (Asph+1) ⋅C2 ⋅ r2

 33

Extreme shapes can be generated with this function for special purposes. One example is
the cone, a surface used in axicons and energy concentrators. A cone is a hyperboloid
whose vertex curvature C is infinite (an infinitely sharp tip). Although infinity cannot be
represented in BEAM FOUR, very large numbers are easily written in scientific notation.
Use any huge curvature, say 9E9, for a cone opening toward +z, or -9E9 for a cone
opening toward the opposite direction -z. Then evaluate your asphericity from the
formula -1-tan2(α) where α is the semiapex angle of the cone (the angle between its axis
and its side). For example, a 45° cone (90° full apex angle) has an asphericity equal to -2.

Some workers prefer to use a different measure of conic constant, namely "Shape" equal
to Asph+1. Shape measures departure from a paraboloid. BEAM FOUR recognizes
"Shape" and or "S" as a profile header and you may use that if you prefer. Don't mix
them in the same optics table however. The default value for Shape is +1.0, a sphere.

Some workers use the symbol k or κ to indicate a general conic constant. There is
unfortunately some ambiguity in the literature as to whether this is to be interpreted as
asphericity or shape or eccentricity, all of which are conic constants. For clarity we do
not support k or κ but only the uniquely defined asphericity and shape quantities.
Appendix 1 details the connections among these parameters.

The conic sections of revolution can be extended in complexity by adding polynomial
terms. The equation for the conic surface including polynomial terms is

z = C ⋅ r2

1+ 1− (Asph+1) ⋅C2 ⋅ r2
+ A1 ⋅ r + A2 ⋅ r

2 + A3 ⋅ r
3 +...+ A14 ⋅ r

14

Polynomial terms are useful on their own, without curvature or asphericity, in polynomial
optics such as Schmidt correctors. More often they are combined with curvature and
asphericity to provide small high-order corrections to a surface. The default values for
A1...A14 are zero and you will usually need to use only the first few even coefficients
A2, A4, and A6 since most optical surfaces will be very nearly approximated by the
conic aspheric profile.

Another family of surfaces is the toric family. A toric surface is the surface swept out
when a function z(y) is rotated about an axis that is parallel to the local y axis. This
surface function can be zero, circular, conic, or include polynomial terms:

z(y) = C ⋅ y2

1+ 1− (Asph+1) ⋅C2 ⋅ y2
+ A1 ⋅ y+ A2 ⋅ y

2 +...+ A14 ⋅ y
14

When this z(y) curve is revolved about an axis parallel to the local y axis, the resulting
toric surface is exactly circular in its xz plane, and is exactly the specified function in the
yz plane. BEAM FOUR recognizes a toric surface by the presence of a Cx header with a
nonblank entry. Cx is the reciprocal of the radius of the circle in the xz plane, to which
the appropriate sign is attached: positive bending towards +z, or negative for –z.

We emphasize that the local variables x, y, and z are all measured with respect to the
vertex of the surface and are oriented so that z lies normal to the surface at its vertex.
These local coordinates differ from the lab coordinates by translation and orientation. In

 34

the case of the toric surfaces, Roll may be used to rotate the toric about its z axis and
thereby place its principal x and y axes at any angle with respect to the lab frame.

Here are a few specific examples of toric surfaces.

• A large class of cylinder surfaces is available by setting C to something nonzero
and explicitly setting Cx=0. In this way the surface z(x,y) will depend only on y
via the formula above and will be a constant with respect to x. Its axis will be
parallel to the x axis. It will be a circular cylinder if Asph=0 and if the
polynomial coefficients are all zero. By choosing a nonzero value for Asph, the
group of conic cylinders (elliptical, parabolic, hyperbolic) is produced. By
selecting nonzero values for one or more polynomial coefficients A1...A14,
polynomial cylinders can be created: see for example S-Cylinder.OPT. Setting
Cx=0 and C=∞ (any huge value such as 9E9) along with an Asph < -1 yields a
dihedral -- the figure formed by joining two planes along a common edge.
Choose Asph = -1-tan2(α) where α is the dihedral half-angle, as with cones. See
for example Dihedral.OPT.

• A simple circular cylinder surface can be produced by forcing C=0 and assigning

no polynomial coefficients, and then using Cx to control its curvature. This way
the cylinder axis lies parallel to the y axis and its (x,z) intercept is a circular arc
whose curvature is Cx (i.e. its radius is 1/|Cx|).

• If both C and Cx are nonzero, but the polynomial coefficients are all zero and the

asphericity is zero, a conventional circular torus results.

• All these capabilities can be combined to define a general conic or polynomial
toric surface. Here, we use C, asphericity, and polynomial coefficients to form
the z(y) curve and then use Cx to impose the figure's curvature in the xz plane.

• Because the C, Cx, and Cy descriptors apply only in the local frame of an

individual surface, the entire toric figure can be rolled to any angle you might
need by introducing a Roll datum to that surface. For example, if Roll=90deg, the
simple circular cylinder controlled by Cx will be curved in the lab (Y,Z) plane
and will have its axis in the lab X direction.

Example 9.2 We illustrate three of these features in Figure 9-2 below. At the lower left
is a hyperbolic cylinder, using Cx=0 but Curv=+10.0 and Aspher=-2.0. The cylinder's
axis is parallel to the x axis, vertical in this presentation. This cylinder is general,
allowing variants from circular through conic to polynomial generators. In the middle is
a circular cylinder using Cx=+1.0 but Curv=0. At the upper right, a circular torus is
shown, with Cx=+1.0 and Curv=+5.0.

 35

Figure 9-2 An oblique view of three toric surfaces: a general cylinder (here, hyperbolic)
with its axis in the x direction (here, upward); a circular cylinder with its axis in the y
direction, and a circular toric section at the upper right.

Beyond torics, there are a multitude of other surface descriptors in use within the optical
community. Biconic surfaces (see BICONIC.OPT) are built into Beam Four: these use all
four specifiers Ax, Cx, Ay, and Cy. Zernike polynomials (Appendix 3) are built into
Beam Four: they are most commonly used to describe the wavefront variation over a
pupil, and can be added to any surface to serve as a wavefront corrector. Alternative
mathematical formulations of surface profiles (not part of Beam Four) are the Cartesian
Oval (R. Descartes, 1637) and its generalizations, the cone concentrator (e.g. Winston,
Appl. Opt. 17#5 1978; Eichhorn, Appl. Opt. 21#21 1982), the aplanatic aspheres (Mertz,
Appl. Opt. 18#24, 1979), the B-spline (e.g. Chase, Proc. SPIE 4832, 2002), the super-
conic and sub-conic (Greynolds, Proc SPIE 4832, 2002), the “exact” aspheres of Lynden-
Bell and Willstrop (MNRAS 351, 2004), and the polysag family of surfaces (Terebizh,
astro-ph/0707.1731 2007).

Periphery headers are optional. They let you define the physical boundaries of each
surface, describing it as circular, elliptical, square, or rectangular. In the absence of a
periphery specification, rays will use your optical surfaces wherever they fall, subject
only to restrictions imposed by geometry (e.g. if a ray misses a sphere, it cannot intercept
it, and is lost). By imposing one or more specifications you gain control over which rays
will proceed through the ray trace at each defined surface, according to where they
intercept that surface. In this way you can explore issues of vignetting and field coverage

 36

using realistic optical element dimensions and shapes. Peripheries apply to any type of
optical surface: lens, mirror, iris, array, or retroreflector.

The most basic periphery datum is the Diameter field. Its header can be abbreviated D or
Diam. Upper case “D” indicates outer diameter. It creates a circular zone with the
specified diameter beyond which rays fail to continue their progress in the ray trace. A
blank datum under this header turns the feature off so that no rays are stopped. Its shape
is by default circular, and it is centered on the vertex of its host optical surface.

A blind center zone can be introduced into any surface by putting a "diameter" field into
your table and an appropriate nonzero value into that surface's field. The lower case "d"
indicates that this is an inner periphery. It can be abbreviated "diam" or simply "d".
Rays that intercept the surface within a centered circle of this diameter will be stopped.

Elliptical peripheries can also be produced. Instead of using a D column, use two
columns: a Dx column and a Dy column. Distinct numerical entries in these columns will
yield an elliptical aperture with distinct diameters in the x and y direction. If either of
these is left blank, the default is the Diam (if specified) or the other D value, making the
aperture circular. Similarly, lower case dx and dy specify create data columns where you
can specify distinct inner diameters for an elliptical central blind zone.

These same rules apply to apertures and peripheries that are square or rectangular. To
create a rectangular or square element, insert a data column whose header is "f", "F", or
"figure" or "Form" or some such, and in this field give those optical elements that are to
be square or rectangular the designation "S" for the outer periphery, or "s" for the inner
periphery, or "Ss" for both outer and inner peripheries. A blank datum leaves a surface
with its default circular or elliptical form. Then, assign the diameters "D" or "Dx" and
"Dy" as you would for a circular or elliptical element. Again, "d" and "dx" etc can be
used with the square or rectangular figures to specify a blind center that is rectangular.

If you furnish the Diameters for all your optical elements, there will be enough
information for BEAM FOUR to show a layout diagram of your optical system even with
no rays being present and with no .RAY table having been loaded. To create this layout
without rays, click Run::Layout. Of course, with no rays, there will be no ray traces
computed. But the artwork for Layout will be generated and displayed. For most
purposes though you will use a .RAY table to to set up the rays that will illuminate your
optic. This way, even without specified element diameters, the rays themselves furnish
the needed Diameter information and allow a layout diagram to be constructed. The only
surface types that cannot be drawn in this way (with automatic ray Diameters) are the iris
and the spider.

Offset or off-axis optics can also be modelled. The fundamental coordinate system for
optical elements is based on the vertex positions of the elements --- the vertex being the
point on a mathematical surface where the axis of symmetry lies. In centered optics, the
periphery of the optic is equidistant from that vertex. But in off-axis optics, the working
surface can be displaced so that its center lies at a local x, or y, or both, that is nonzero.

 37

To specify a optic whose periphery is offset from its vertex, create a field header "OffOx"
and/or "OffOy" (not case sensitive) and for each item in the table that is offset, fill in the
offset distances in x or y for that optic, measured in the vertex frame from the optic's
vertex. Similarly, if there is a central hole or other inner diameter feature to a surface,
the additional fields "Offix" and "Offiy" (not case sensitive) are available to offset the
inner boundary from the vertex. These offsets work for boundaries that are circular,
elliptical, square, or rectangular. The next three examples illustrate these ideas.

Example 9.3 The first of three off-axis paraboloid (OAP) examples is the simplest. We
begin with a simple parabolic reflector located on our coordinate axis, illuminated by a
ray group that is offset to one side so that only an off-axis portion of the paraboloid is
actually in use. Figure 9.3 shows the optics table, the ray table, and a layout of this
elementary system. Note that just as with a fully illuminated paraboloid, these rays arrive
at a perfect focus provided of course that they are incident parallel to the paraboloid axis.

Fig. 9-3: A parabolic mirror is illuminated by a ray group that is offset from its axis. The
horizontal dashed line is the lab z axis, which like the other drawing features can be
switched on or off at Options::Layout. The default behavior of Layout is to show the
entire axisymmetric surface even if only a portion is illuminated.

 38

Example 9.4 This second OAP example shows how to set up the periphery of the mirror.
Here we define a mirror Diameter of 0.5 and a periphery offset of 0.35 so the entire
mirror lies off its optical axis. The trace results for this ray group are unchanged, but if
the beam were enlarged, intercepts beyond the mirror edge would fail.

Fig. 9-4: The parabolic mirror is again illuminated by a group of offset rays, but now the
periphery of the mirror is defined, using Diam and OffOx parameters. With the
periphery defined, only the portion of the optical surface within its periphery is active, and
only that portion is shown in Layout. The mathematical vertex of this paraboloid still lies
on the lab Z axis. An oblique Layout view is shown in the above right panel.

 39

Example 9.5 This third OAP example is like the second but now we have moved the rays
and the mirror to a new lab coordinate system centered on the rays rather than on the
mirror vertex. The ray trace is unaffected except of course the lab frame final intercepts
are listed in this new coordinate system.

Fig. 9-5: An off-axis parabolic mirror is traced again, this time redefining our coordinate
system so that it is centered on the incoming ray group, putting the rays on axis. The
mirror vertex and the focus are moved off the lab Z axis to a value X=-0.35.

 40

Example 9.6 Optical surfaces of type Iris have these properties of outer and inner
dimensions but unlike lens or mirror surfaces do not modify the directions of rays – they
serve only to enable or disable a ray encountering the iris. In addition to its outside
Diameter and inner diameter properties, an iris can have a set of equally spaced radially-
oriented spider legs that block light. The Nspi and Wspi field headers (see Table 9-1 and
Fig 9-6) allow you to enter the number of legs and the leg width into your optics table.

Fig 9-6 A cassegrain imager with a four-legged spider as the initial iris surface. The
number and width of the spider legs are specified in Nspi and Wspi respectively. Note
that in this optics table the final surface is given a type “CCD” – this is meaningless for
the ray trace, since the final surface has no ray bending action. You may assign your
final surface however you like, as a memory aid.

Iris surfaces (including spider legs, if any) need not be planar. They enjoy the same
geometric freedom that other optical surface enjoy, and therefore can be conic, toric,
polynomial, etc. See example 9.11 for a conical spider.

An iris need not be circular. Alternatives are elliptical, square, or rectangular. An
elliptical iris is an ordinary round iris whose two specified Diameters Dx and Dy differ.
Square irises are obtained by putting an “S” into a Form column, and then for a rectangle
supplying different Dx and Dy values. Example 9.7 illustrates this flexibility by creating
a rectangular slit in the focal space between two lenses.

 41

Example 9.7: An intermediate rectangular slit limits light rays passing to a second lens.

More complicated peripheries can be built up by stacking irises atop any target optic. For
example, an octagonal mirror edge can be modelled as a square mirror to which a square
iris of the same size, rolled 45°, has been added. Similarly one or more irises with
defined inner diameters (but no outer Diameters) can be applied to an optic to create
blockages wherever needed. If the surfaces to be stacked are flat, they need not be
separated by any distance whatsoever: they may have identical locations and orientations.

Beyond these individual lens, mirror, and iris elements, BEAM FOUR can generate and
use arrays of lenses, mirrors, and irises. An array of elements is a flat two-dimensional
rectangular grid of identical elements. To set up an array, you will need to declare a
Diameter (or separate Dx and Dy fields) to describe the boundary of the rectangular grid,
and the numbers Nx and Ny of array elements along the x and y axes. The array types
are LensArray, MirrArray, and IrisArray. The lenslets and mirrors are quadratic figures
of revolution or cylinders and have parameters Curv, Cx, and Asphericity. The
individual irises in an iris array can be circular or elliptical and are described by diam or
dx and dy. To make the array elements square or rectangular, put a lower case “s” into
their Form field.

Now we turn to some examples with additional details that illustrate these features.

 42

Example 9.8: The files PRISM.OPT and PRISM.RAY show the basics of doing
polychromatic refraction using GLASS.MED. The first field of the optics table “Index”
calls out the glass name to be looked up as a row in the media table, and the ray table
calls out each ray wavelength to be looked up among the fields of that media table.

Fig 9-8: A simple prism with rays at three wavelengths disperses its light. In the .RAY
table, the Fraunhofer “C” line lies at the red end of the spectrum and is color coded “R”
for display purposes; similarly the sodium “D” lines are yellow, tagged “Y”, and the “F”
line lies at the blue end of the visible spectrum, tagged “B” for display.

 43

Example 9.9: Below, in ACHRO.OPT, the refractive index field is supplying glass
names rather than numerical refraction index values, just as in PRISM.OPT above; again
the ACHRO files require GLASS.MED to provide this lookup table. The second field
“Z” provides Z axis coordinates of the successive optical surfaces. The X and Y data are
not specified in this table, and therefore will default to zero so that there are no decenters.
Moreover there are no tilt or pitch columns, so the tilt and pitch angles default to zero.
This optic is therefore fully coaxial.

The third column in ACHRO.OPT is headed "Curv" indicating the table location for the
curvature of each surface. A zero or blank data entry under this header indicates a flat
(plano) surface. A positive entry would indicate the surface to be curved towards the
local +z direction, and a negative entry indicates curvature towards -z. Because no
columns are provided to describe asphericity or shape, and because there are no
polynomial or toric descriptors anywhere in the table, the surfaces will all be taken to
have the default spherical profile, as with the simple LENS.OPT example shown earlier.

The fourth field in ACHRO.OPT is headed "Mir/Lens" which identifies a column to
declare what the surface action is to be. An equivalent header is "Type." Since BEAM
FOUR uses only a many characters as necessary to parse your data, any word that starts
with "M" or "L" or "T" will serve. Under this header, an entry that begins with "m" or
"M" indicates that the surface is a mirror and the trace is to follow a reflection at this
surface. "L" or 'l' indicates a refractive lens surface. "I" or "i" indicates the surface
should be traced as an iris -- stopping or passing a ray but not changing its direction.
Each iris let you specify outer and inner diameters, a format "S" or "s" or "Ss" meaning
square or rectangular (default is round), and also a number of equal spider legs and their
widths.

"Retro" in your “Type” column specifies that a surface is a retro reflector -- it sends each
ray exactly back on itself. This is mathematically impossible (it violates the principle of
stationary phase for real rays) but occasionally useful to convert a virtual image into a
real image, for analysis. Do not use “retro” in calculating optical path or wavefront error.
However a retro surface is very useful if you want to originate rays at an internal pupil:
start them there, and send them backwards through your optic to an external Retro
surface out front. They will return to those pupil locations exactly and will then trace
through your optic. If you are using this feature you may want to make your Retro
surface invisible in Layout::Options so the rays appear to be simply incoming.

Your final surface is defined by the guide number at the upper left corner of your optics
table. At the final surface, the entry under your “Type” header doesn't matter since the
ray won't be redirected further. In our examples we use "film" or “CCD” or “Done” but
it could be blank, or anything, since no ray bending happens here.

The fifth field in ACHRO.OPT is "Diameter" which reserves space in the table to show
what the design diameter of each optical element is. Diameters that are left blank won't
limit the trace in any way. Those that are specified will allow only rays to proceed that

 44

would be transmitted by an actual optic having the specified working diameter. The
letter "D" is how BEAM FOUR recognizes this specification; the letters that follow it are
simply reminders as to what it stands for.

Fig 9-9 Upper: Unlike LENS.OPT shown earlier, in ACHRO.OPT the glass names are listed in
the "Index" field, so that refractive index information can be looked up in a .MED table when the
ray traces are run. Where the glass name is left blank, air is assumed. To accomplish the lookup,
each ray in the ray table will need an assigned wavelength. See the discussion of wavelengths in
Ray and Media chapters for the details. Lower: A layout diagram with ACHRO.OPT and a set of
incoming rays color coded red, green, and blue. The rays are drawn in the same order that they
appear in the ray table, and these three ray groups have traces that are so nearly identical that the
blue set overwrites the others at this moderate layout zoom setting. When you zoom in on the
rays you can see that their individual traces are not, in fact, identical.

 45

Example 9.10 A simple Cassegrain telescope with an eyepiece is modelled in the file
CASS.OPT shown below. The eyepiece is built from a pair of achromatic lenses.

Fig. 9-10 The file CASS.OPT shows an iris with a central blockage and a primary mirror with a
central hole. These have a specified outer Diameter, and also a specified inner "diam" (note the
lower case "d") within which it is blind. To do a proper study of the vignetting (off axis
transmission) you may need a series of iris surfaces that constrain working rays to lie within
assigned boundaries.

One feature illustrated in CASS.OPT is the specification of a central blind zone in an
optic. Whereas "Diameter" or "Diam" or "D" (upper case D) describe the outer diameter
of a circular optic, the lower case "diameter" or "d" specify the diameter of its blind
center. This is the second field of the table in CASS.OPT shown above. For elliptical
apertures you may specify DX and DY separately, and dx and dy separately also.
Rectangular apertures are specified by adding a “Form” column containing “S” and/or
“s” for square.

 46

Example 9.11 A more complex telescope of the “three-mirror anastigmat” type is
illustrated in Figure 9-11 below. Here, the incident light passes through a strongly-
curved conical 3-legged spider iris representing the structure that supports the secondary
mirror. Then, rays pass to the primary, secondary and tertiary mirrors to arrive at a focal
plane. This final surface is assigned a Type “CCD” but again the final surface type is
ignored by the ray tracer: Type has no effect on the ray arrivals at a surface.

Fig. 9-11: A three-mirror anastigmat telescope with a three-legged spider that models the
obstruction caused by a three-legged secondary mirror support.

In this example, the spider is far from planar: it is assigned a huge positive curvature and
an asphericity making it essentially a cone. Irises and spiders respond to all the surface
descriptors available to active optical surfaces: cylinders, torics, polynomials etc.

 47

Example 9.12 A relay is an important component of a complex system. It moves a real
or virtual image from one location to another. A fully reflective Offner relay uses three
reflections from mirrors that are spherical and concentric. An example of an Offner relay
is shown in Figure 9-12.

Fig. 9-12 An Offner relay has three reflections from spherical surfaces. The first and
third reflections are from a single concave mirror, and the second takes place at a smaller
concentric convex mirror having twice the curvature.

 48

Example 9.13 The Offner relay is a convenient demonstrator of the offset dimensioning
described earlier in this chapter. Only two zones of the concave mirror are in use in an
Offner relay and these can nicely be divided up by identifying two offset portions of the
parent sphere. In Fig 9-13 we illustrate the use of the offset OffOy. Notice that the first
and third reflective surface have the same Z, Curvature, and Diam --- they differ only in
their y axis offsets OffOy.

Fig. 9-13: Similar to 9-12 but the active portions of the concave mirror have been isolated
by means of defining OffOy, by setting Form=”S”, and choosing smaller Diameters.

 49

Example 9.14 The Hartmann test for concave mirrors reveals slope errors over the mirror
surface. The setup places a point source of illumination at or near the mirror’s center of
curvature, and an opaque screen with an array of holes located near the mirror.

Fig. 9-14: A Hartmann test for slope errors in a concave mirror involves a perforated
screen near the mirror, and a light source and imager near its center of curvature. Top:
HARTMANN.OPT file showing a parabolic mirror fed by an IrisArray with 10x10 holes
in the diverging and converging light. Center: portion of a layout showing the screen and
mirror. Bottom: the spot diagram at paraxial focus, and the spot diagram with the image
plane set to Z=-0.04 units.

 50

An imager near the center of curvature records the pattern of beamlets in the converging
light returning from the mirror. For an ideal spherical mirror, the pattern is regular and
symmetrical both inside and outside focus. For an ellipsoidal, parabolic, or hyperbolic
mirror the patterns inside and outside focus differ in a quantitative manner. At paraxial
focus, the spots are highly concentrated at their center; at edge focus the paraxial rays
cluster at the edge of the diagram.

The Hartmann test is useful because it is very sensitive to small slope errors in the mirror
being tested. To demonstrate this, add a few parts per million of a Zernike coefficient
(Appendix 3) to the mirror and see the remarkable changes to the spot pattern.

 51

Example 9.15 A Shack-Hartmann wavefront test uses an array of lenses to image a grid
of wavefront sections onto an image sensor. If the wavefront is flat, the rays will be
parallel and the image spots will form a regular grid defined by the lenslet grid. If the
wavefront is irregular, the spot pattern will be irregular. Figure 9-15 shows a 5x5 lens
array set up for this task.

Fig. 9-15: The Shack-Hartmann sensor uses a precise grid of lenslets that bring parallel
rays to form a grid of image surfaces, as shown.

The Shack-Hartmann test is far more efficient in its use of light than the Hartmann test
because nearly all the incident light is sent on to the image. This fact allows its
application in real-time wavefront sensing where speed is essential and light levels are
often limited.

 52

Example 9.16 A compound mirror may be assembled from several bimodal mirrors
whose type is bim. When hit by a ray, each reflects just like an ordinary mirror. A ray
that misses the mirror is allowed to skip onto the next surface in the optics table. Each
member must have a specified Diameter to establish its legal intercept zone. Fig 9.16
below shows an incoming beam divided into three portions by three bimodal mirrors,
each with its own orientation and other properties. The elements of a group can be
separately tuned using AutoAdjust (Chapter 20).

Fig 9-16: Three bimodal mirrors gather light from an incoming beam. Unlike an array,
each mirror surface is separately specified by its location, size, and orientation. Failed
ray starts are those that fail to encounter any of these mirrors -- they are shown as dotted.

 53

Example 9.17 An image slicer is an optical tool that divides a two-dimensional object
field into slices and rearranges them end-to-end. It’s used in astronomy to format an
extended field --- a galaxy for example -- for spectroscopy. We use 3 bimodal triplets.

Fig. 9-17 shows a schematic three-path image slicer. The input field has a 3x3 grid of
spots focused onto three bimodal slicer mirrors. Those illuminate three round pupil
mirrors (left side of upper left oblique view) which in turn relay the spots onto three field
mirrors. The nine output beams are seen in the upper right end view.

In the highly simplified example Slicer.OPT shown here, there are just three slices,
defined by three mirrors located at the focal plane of a telescope. We color code the rays
blue, red, and green to help visualize the slices. Each slicer mirror is separately pitched,
tilted, and curved to illuminate its own dedicated pupil mirror. These pupil mirrors do all
the work: they relay the incoming spots into the output zone, lined up in a vertical stack
of images. Each pupil mirror has a dedicated field mirror to make the outgoing light
converge into the pupil of a downstream spectrograph, not shown. A final tall narrow flat
mirror redirects the light from all beams out of the side of the apparatus.

 54

Example 9.18 A pair of hemiellipsoids can be joined to make a complete concave
ellipsoidal reflector. In BEAM FOUR, surface profiles are defined as single-valued
functions z(x,y) to avoid false ray intercepts with phantom hyperboloid sheets or farside
(far from the vertex) ellipsoid vertex hits. Here we realize a complete ellipsoid by
combining two opposed nearside hemiellipsoids, as in this example (Fig 9-18). Here, the
first reflector surface listed is a bimodal hemiellipsoid whose vertex is at Z=8. Its mate is
a second bim at Z=0 with the same shape but with opposite curvature. The focus
locations are given by the conic equation formulas (see Appendix 1) based on curvature
and shape.

Fig 9-18 Top panel: layout view of the pair of joined hemiellipsoids, with rays emitted
from one focus into all directions. They arrive at the opposite focus. Lower panel: the
.OPT file showing the BIM designation. Rays that fail to reflect off the right hand
hemiellipsoid will skip that and try the next surface, which is the left hand hemiellipsoid.
Each hemi is nearside, that is, it is the hemi that includes its vertex.

 55

Example 9-19 Bimodal lenses can be used to divide an optical beam into separate
portions. Each bimodal lens consists of a successive pair of surfaces, front and rear,
identified by the surface type designators BIF and BIR. In the example shown here two
such lenses are cascaded, and each has a central hole. Rays that pass through a lens are
refracted as usual, but those that pass outside the lens diameter or within the hole
diameter proceed to the following surface(s).

Fig 9.19 Upper portion shows a layout of this pair of bimodal lenses, each with a central
perforation. The outermost rays marked in red refract through both lenses. The rays
shown in blue pass through the hole in lens number one, and are refracted by lens number
two. The innermost set of rays pass through both holes and are not refracted. Rays that
are mixed (refracted by the front but miss the back, or vice versa) are killed and show
only dotted extensions.

 56

Example 9-20 Branched optical systems can be implemented using bimodal surfaces. Fig
9-20 illustrates a Ritchey-Chretien two-mirror telescope whose central field passes
directly to a high resolution imager, while pickoff mirrors and field flattener lenses image
the off-axis light for telescope guiding.

Fig 9-20 Side view of the telescope and guide pickoffs. Central field rays are shown in
blue; guide field rays in red. Surfaces 3, 4, 5, and 6 are the upper guider assembly: it has
a pickoff mirror, a field falttener lens, and a sensor (listed as a bimodal ray terminator).
Rays that miss this upper assembly can then pass to the lower guider, and if they miss
that, they can proceed to the final surface 11.

 57

Example 9.21 Forward scattering surfaces are built into BEAM FOUR. As an example
we show an ideal hyperbolic lens collimator, followed by an ideal hyperbolic lens
camera. (Such lenses were first explored by R. Descartes, 1637.) Between these we insert
a forward scatter surface that deviates rays in direction by an amount of 1.0 degrees RMS
in each of the U and V directions, and a hyperbolic lens camera that records the deviated
ray positions. If you want a reflective scatterer, just combine this forward scatter
function with a mirror or retroreflector. Wavefront error determinations are not
compatible with nondifferentiable optical path disruptors like this one.

Fig. 9-21 shows a layout of an idealized collimator lens, a scattering surface (surface #3)
and an idealized camera lens. The Type designator is “Scat” identifying surface 3 as a
forward scatter surface, and its parameter “ScatRMS” is where you specify the RMS 1-D
angle in degrees. Here it is set to 1.0 degrees.

 58

Example 9.22 A coordinate break is sometimes needed as a programmable interface
between two optical subsystems, especially if each is complicated and it is easiest to
locate them on a common axis even though there may have to be some adjustments made
in their relative displacement or orientation. Spectrographs are fundamentally bent. As
an example we show below an ideal hyperbolic lens collimator on the left, a coordinate
break with a z-axis gap and an angle feeding a disperser, and another coordinate break
feeding hyperbolic lens camera. All three elements are coaxial in the table, to simplify the
specification, but the rays are re-aimed by the coordinate breaks, introducing two
effective bends into the optic.

Fig 9.22 Illustrating coordinate breaks between a collimator and prism, and between the
prism and its camera lens.

Other Examples are presented in the collection of demo files that are supplied with each
BEAM FOUR distribution. Chapter 28 lists many of these files with short descriptions.
They illustrate holographic optical elements, Zernike polynomials, and a variety of other
useful optical items. Those files include a group of null test files whose purpose is to
evaluate the accuracy of ray traces: if the optic being traced has an exact analytic
solution, a null test file can be created that demonstrates how closely this solution is
achieved. Use the null tests to evaluate BEAM FOUR and other ray tracers you have.

 59

Chapter 10: Rays and Ray Tables
A ray table tells how your optical system is to be illuminated, that is what the ray
coordinates are that you want launched into your optic. These are input data. It is also
usually set up to show selected output data: information about ray positions and
directions at specified internal surfaces within your optical system, and/or at your final
surface where your trace ends. Because it combines input and output ray data, the ray
table is the most important way to summarize the results of a trace. An example of a ray
table is LENS.RAY, shown below. It illuminates a simple lens with a fan beam of rays
originating at X0=+0.5. Many other examples are provided with BEAM FOUR.

Ray tables are text files. They may be copied to the clipboard from which they may be
combined with other files, inserted into e-mails, word processed, and generally treated as
you would treat other text. Tables generated by other programs can be read into BEAM
FOUR using its File:OpenRays function. There is a particularly convenient way to
perform i/o to and from spreadsheets via the clipboard as described in Chapter 26.

To load an existing .RAY table, choose File:OpenRays or simply drag it from its
directory onto the BEAM FOUR workspace. Or, to load an empty ray table, choose
File:NewRays. In either case an editor window will open on screen, with the table editor
functions outlined in Chapter 8.

Fig. 10-1 The file LENS.RAY demonstrates a simple fan beam. All rays here start at at height
X0 = 0.5 units above the axis of symmetry (the Z axis). They are aimed into a range of directions
given by the list of U0 values (see text). Individual ray wavelengths are not specified, but the tag
character "r" on each ray wavelength has BEAM FOUR colors each ray red when drawn in a spot
diagram or layout diagram. The xfinal field represents the final ray height. Its presence here will
capture the xfinal data when a ray trace is run using Run::InOut. The "notes" field gives an
abbreviated explanation of the fate of each ray -- see Table 10-1.

 60

Like optics and media tables, a ray table has a three line preamble followed by data
records. Each line in the table represents one ray in your illuminating beam. Table
entries below your declared number of rays are ignored by BEAM FOUR: if your table
has 800 rays in it, but the control number in the upper left corner says “11,” then only the
first 11 rays will be traced. You can start with a tiny ray group and add complexity later.

Title Line (line #1): The top line in the preamble is the title line: its initial characters
should specify a number between 1 and 999, the number of rays to trace, and the
remainder of the title line can be used for any purpose. In our examples we put the file
names into the title, but you may use this title area for any purpose that you find useful.

Ray Field Headers (Line #2): The second line of every ray table carries the ray field
headers. BEAM FOUR uses this information to figure out what data you are specifying
and what output data you want to have computed and saved in the table. The first two or
three characters of each field header word are significant to BEAM FOUR, although in
our examples we usually add enough extra characters to make these abbreviations more
easily recognizable to people. Leading and trailing blanks in the headers are ignored.
There is no requirement to place your fields in any particular sequence across the width
of the table, but in our examples we usually keep the input data towards the left and the
output data towards the right. Fields whose headers are blank can be used as separators
or for your own notes or comments.

Some of these fields (in this example X0, U0, @wave) are input data to BEAM FOUR.
Ray starts that are not specified in the table (for example: Z0 -- what is its value?) are
assigned reasonable default values, typically zero, that are listed below. The idea is to
have you provide only the non-default information in the ray table.

The other fields (in this example: xfinal, notes) reserve space for output data. You use
these by typing in the field header names that you'd like to see be presented when your
ray trace runs. Leave the data fields blank since they will be filled in by BEAM FOUR
when you request a trace using the Run:InOut menu item.

In the example LENS.RAY shown above, the first field header is X0 which means that
data in this field will be understood as X coordinate ray heights at surface zero -- the
starting surface. The optical surfaces are numbered 1, 2, ... up to the final surface, with
zero referring not to an optical surface but rather the ray start position from which the
rays are launched before any surface intercepts have occurred. So, X0 will carry input
data that you specify, telling BEAM FOUR each ray's X starting coordinate. In this
example all the ray starts have the same value, 0.5 units, so all rays start at the same
height off the Z axis.

In this example there is no Y0 or Z0 field. So, these default to zero for all rays.

The header for the second field in this example is U0. This is a list of the ray starting
directions, and the data furnished gives a fan of ray directions. Positive values of U0 are
ascending rays and negative U0 values are descending rays. U0 is a direction cosine, the

 61

component of the unit ray direction along the X axis. V0 and W0 are along the Y and Z
axes.

The ray direction V0, by its absence, defaults to zero. W0 too is absent; it is usually
allowed to default to the value +sqrt(1 - U0

2 - V0
2) that completes the unit direction

vector. Its default sign is positive, i.e. rays are initially launched into the +Z direction
rather than the -Z direction. (These various defaults can be modified using
Options::RayDirections as described in Chapter 24 "Options.")

In this example the third field “@wavel” is a place to specify the wavelengths of the
separate rays. Here these wavelengths are blank, which is perfectly OK for a
monochromatic ray trace where the glass lens refractive index is specified numerically.
However there is a tag field in use: the tag “r” marks each ray’s color as red when
displayed in layouts and spot diagrams. For other color options, see “tag fields” below.

In this example the fourth field, headed “xfinal,” is a request to see the individual ray x
values at the final surface, whatever its number might be. The final surface number is the
guide number appearing in the upper left hand corner of your optics table. This means
that even though your optic might be complicated and have many successive surfaces,
you can trace it partway by specifying whatever final surface you want there.

In this example the fifth field, “notes”, is an output field. It provides a place for BEAM
FOUR to furnish an abbreviated explanation of why any ray failed to reach its final
surface when Run::InOut is run. It is very useful in debugging a ray trace. For example
if you get a blizzard of “Dia 02” notes, you will want to enlarge the specified Diameter
for surface number two, or re-aim your rays to allow them to trace through that surface.
See Table 10-3 below for further details.

Generally, if the first character of a ray table header is X, Y, Z, U, V, A, W, or P, or their
lower case equivalent, that determines the kind of ray coordinate for that field (see
Chapter 6, "Coordinate Systems"). Upper case is lab frame. Lower case is local surface
frame, displaying coordinates of each ray with respect to the vertex position and
orientation of that surface.

Table 10-1: Ray Field Headers for Input Fields
X0, Xinitial, Xi, ... Lab frame X coordinate for ray start
Y0, Yinitial, Yi, ... Lab frame Y coordinate for ray start
Z0, Zinitial, Zi, ... Lab frame Z coordinate for ray start
U0, Uinitial, Ui, ... Lab frame U coordinate for ray start
V0, Vinitial, Vi, ... Lab frame V coordinate for ray start
W0, Winitial, Wi, ... Lab frame W coordinate for ray start
Xg, Yg, Zg, Ug, Vg, Wg Lab frame goals for RMS calc or autoadjustment
xg, yg, zg, ug, vg, wg Final-surface frame goals for RMS or adjustment
@, @wave, wave, wavelength wavelength for each ray
O, o, order, ... Order of diffraction for each ray

 62

Ray Wavelength Input: Ray wavelengths are required inputs if your refractive index
values are to be looked up in a .MED glass table, or if you will be tracing diffractive
optics. A ray wavelength field is a field whose header word starts with the "@" character
or with the “wa” characters. In our examples we use "@wave" or "@wavel" to make it
less mysterious.

For looking up refractive index data in a .MED table, the wavelength identifiers can be
letters, words, or numbers. The lookup process is a simple search for an exact character
match between the wavelength name in your ray table and the wavelength name in your
.MED table. Any words are OK provided that the spelling and case agree exactly.
Leading and trailing blanks are ignored.

To ray trace a diffractive optic, each ray will have to specify its numerical wavelength in
the @ field. Moreover, the units of wavelength must be consistent with the specified
grating groove density. For example, if the groove density is specified at 1.2 grooves per
micron, then the wavelengths must be expressed in microns, not nanometers or
microinches or Angstroms.

In the example LENS.RAY there is no need for a ray wavelength field since the
refractive index in LENS.OPT is specified numerically. No lookups are needed to get the
refractive index for each ray. The wavelength field is there just to allow the rays to be
assigned color in the graphics output diagrams, where they look nicer in red (tag letter
"r") than they would in plain black and white.

In the example ACHRO.RAY we have assigned ray wavelengths to be letter codes,
called Fraunhofer designations that indicate particular spectroscopic wavelengths. This
choice of descriptors is handy, and consistent with the glass table GLASS.MED that is
furnished with each BEAM FOUR product. Further information on ray wavelength
designators is provided in Chapter 11 "The Media Table" and Table 11-1.

The ray wavelength field tag character (the final character in the field, replacing the
colon) specifies ray colors in the screen graphics for Layout and Plot. Color tags are "r"
= red, "g" = green, "b" = blue, "y" = yellow, "m" = magenta, "c" = cyan. Upper case is
equivalent to lower case. Without a specified tag letter, the default ray graphic color is
the opposite of the black or white background that you have chosen for your graphic. In
many of our examples we link the ray color tag to the actual ray wavelength, so that the
rays of red light appear red on screen in layouts and in plots. However there is no
particular requirement that the plotted ray color tags be associated with ray wavelengths.
Each ray can have its own color tag, independent of wavelength. In this way you can
mark specific rays to identify them more easily. For example you may wish to have your
chief ray or particular marginal rays specially marked.

 63

Fig. 10-2 The file ACHRO.RAY sets up a group of rays all entering the lens at the same off axis
angle (here, U0=+0.05). The first six have wavelength C and are color coded red ("r") in the
plots and diagrams. The second six have wavelength D and are color coded green "g". The third
set have wavelength F and are color coded blue "b".

Setting up Initial Ray Directions (U0, V0, W0): Table entries of this type are the
means to initially direct your rays toward your optic. Ray segment direction vectors {U,
V, W} are always internally normalized to have unit length, and BEAM FOUR takes
care of this normalization automatically and invisibly using the ray start information that
you provide. For the most part, you can simply specify one or more of these parameters
in your ray table, and let BEAM FOUR handle the details from there by means of its
default choices. For completeness we list eight situations with increasingly detailed ray
direction specifications, and the resulting direction vectors, in Table 10-2.

 64

Table 10-2: User Specified Ray Directions

User specifies.... Makeup Normalization? Actions taken
none none {U0,V0,W0} = {0, 0, ±1}

±sign per Options::DefaultRays
U0 only W0 U0 gets limited to ±1;

V0 = 0;
W0 = ±√(1-U0²)
±sign per Options::DefaultRays

V0 only W0 V0 gets limited to ±1;
U0 = 0;
W0 = ±√(1-V0²)
±sign per Options::DefaultRays

W0 only V0 W0 gets limited to ±1;
U0 = 0;
V0 = ±√(1-W0²)
±sign per Options::DefaultRays

U0 and V0 W0 U0²+V0² gets limited to 1;
W0 = ±√(1-U0²-V0²)
±sign per Options::DefaultRays

U0 and W0 V0 U0²+W0² gets limited to 1;
V0 = ±√(1-U0²-W0²)
±sign per Options::DefaultRays

V0 and W0 U0 V0²+W0² gets limited to 1;
U0 = ±√(1-V0²-W0²)
±sign per Options::DefaultRays

U0, V0 and W0 all {U0,V0,W0} gets normalized;
if this fails, it is replaced by {0, 0, ±1}
±sign per Options::DefaultRays

 65

Ray Generators: A basic tenet of geometrical ray tracing is that a distribution of rays
should sample your pupil and report fairly on your optical system aberrations. Several
kinds of initial ray groups are needed frequently, and BEAM FOUR has four automatic
ray generators to help you populate your .RAY table for ray starts or goals. The types are
(1) an equally-spaced one-dimensional fan beam or ribbon beam, (2) a two dimensional
uniform rectangular ray grid, (3) a two dimensional uniform circular ray pattern, and (4) a
two dimensional circular Gaussian ray pattern. These generators can be accessed at the
Options::Ray Generators menu item. To use one of them, follow these steps:

1. Create or open a ray table in the usual way. Set it up with fields for the ray start
information that is appropriate to your optical task. For example you might want to
illuminate a circular entrance pupil with a dense grid of rays starting in your XY plane, so
be sure your ray table has field headers for X0 and Y0, and that your field widths and
decimal point locations are appropriately set to receive your new data. High accuracy is
available if you allow enough digits for the results.

2. Choose Options:Ray Generators and select your generator type. A dialog will pop up
showing the options available for each generator. Each ray generator will extend your
table as far down the page as necessary to accommodate its rays.

1D Ray Pattern: The 1D Ray Pattern Generator (Fig 10-3) offers you the choice of
spanning the X, Y, Z, U, V, or W ray start or goal, using the radio buttons at the top of its
dialog. For ray starts, these are lab frame. For goals whey are whichever frame you
specified in your ray table (Xg=lab, xg=local). The coordinate center and span can be
separately specified, as can number of rays generated. To fit this pattern into a pupil of
height H with equal ray weights and areas, use span = H⋅(N-1)/N.

Fig 10-3: Options::RayGenerator dialog for the 1D Ray Pattern. Output can go to the ray
start or the ray goal coordinate chosen. The radio button group selects which ray
coordinate is to be populated. Its center value, span, and ray count govern the result.
Your ray table will receive the rays starting at the row requested.

 66

2D Rectangular Pattern: The 2D Rectangular Pattern Generator is similar to the 1D
generator but produces a grid of ray starts spanning two dimensions: X,Y; X,Z; Y,Z;
U,V; U,W; or V,W. Again, the top radio button group sets your selection. The centers,
spans, and number count of uniformly spaced values per axis are specified in the six data
entry boxes of the dialog. To fit this pattern into a rectangular pupil HxW with equal ray
weights and areas, choose your spans equal to H⋅(Nh-1)/Nh and W⋅(Nw-1)/Nw.

Figure 10-4: Options::RayGenerator for the 2D Rectangular Pattern generator. The
radio button row selects the pair of ray coordinates that you want the generator to
populate. The first three data entry boxes set up the center value, span, and count for the
first coordinate. The second three data entry boxes handle your second ray coordinate.
This example produces a 20x10 grid of ray starts in (X,Y). Be sure your .RAY table has
columns for the two coordinates you are generating (for example, X0 and Y0 fields or Xg
and Yg fields). Click "OK" to run the generator.

 67

2D Circular Uniform: The 2D Circular Uniform generator (Fig 10-5 below) is a bit
more complicated. It is based on the hexagonal number sequence (1, 7, 19, ...) that fills a
circular pupil with a nearly uniform density of points arranged in circles of increasing
size. To use this generator, first decide which coordinate pair should be populated, and
decide what the position offsets and radius in the lab frame should be. Then choose how
many circles and therefore rays you would like to put into your pupil. Assuming that
your .RAY table is set up to receive your chosen coordinates -- for example X0 and Y0 --
- when you click OK these ray starts will be computed and entered into your .RAY table
beginning with the row you have specified in the dialog box (default is row 1). To fill a
circular pupil of radius P with equal ray weights, choose Router = P⋅Nrings/(Nrings+0.5).

Figure 10-5: Options::RayGenerator for the 2D Circular Uniform generator. First be
sure your .RAY table has columns for the two coordinates you are generating (for
example, X0 and Y0 fields). As with the other ray start generators, the radio button row
selects the pair of ray start coordinates to be populated. Two data entry boxes set up the
center value offsets for the first and second ray coordinates. The third data entry box sets
up the radius of the outermost circle of the pattern. The spinner control lets you specify
the number (1...17) of concentric ray start circles that you want generated. Click "OK" to
run the generator. The right hand plot shows three circles totalling 37 rays.

 68

2D Circular Gaussian: This ray generator is also used to fill a circular pupil, but with a
ray population that is concentrated towards the center. There are N concentric rings
containing 6, 12, 18, …rays for a total of 3N+3N2 rays. We assign each ring group a
fractional probability proportional to how many rays it has. The radius enclosing a
Gaussian probability P is s⋅√(2*ln(1/(1-P))) where s is the standard deviation. It follows
that the ring radii are linked together nonlinearly, with

This is the formula used to generate the successive ring sizes. Options and results are
shown in Fig 10-6. To fit this pattern into a circular pupil of radius P containing 99% of
the light with equal ray weights, choose Router = P⋅ √(ln(1+N)/ln(100)).

Figure 10-6: Options::RayGenerator for the 2D Circular Gaussian generator. This
works like the Circular Uniform generator, except that its ray density is based on a two
dimensional Gaussian probability density rather than being uniform.

 69

Fixed Goals: You can specify one or more goals for each ray. These input data are final
ray coordinates (most commonly xgoal and ygoal) specifying where you would like the
rays to go. They serve as target values when Run::InOut has its RMS calculator turned
on, or when you run the AutoAdjust feature which adjusts optics or ray parameters to
minimize the RMS deviation between the rays and their goals. Table 10-1 shows the
nomenclature. For examples see Chapter 12 “Run::InOut” and Chapter 20
“Run::AutoAdjust.” Rays can be individually aimed at goals to fill an internal pupil using
AutoRay, Chapter 21.

Floating Goals: Goals for groups of rays can also float, i.e. adjust themselves to a
common value within each group. This value is the average of all the group ray
coordinate values. This feature is used when you want to know or minimize the scatter
about the mean group position but don’t care where that position lies. Goals are grouped
by tag letter. All rays in the first group might be tagged “a” and the next group “b” and
so forth; actually any letters will do. There is no need to supply numerical values in the
tagged fields since these will be computed and displayed as part of the averaging process
for each group.

Ray Table Outputs: As mentioned at the beginning of this chapter, the ray table can be
set up to receive selected output data from any ray trace. To do this, put appropriate
output field labels into your table header. These abbreviated labels follow the same name
conventions as the input field labels, except of course that output data are not at surface 0
but rather are at surface 1, 2, ...final. So X1, X2, ... through Xfinal are the lab frame X
coordinate values of ray intercepts at surfaces 1, 2, ... final. Headers A1, A2 etc request
angles between each incoming ray and its surface normal.

Table 10-2: Ray Field Headers for Output Fields
X1, X2, ... Xf Lab frame X intercept value at surface 1, 2, ...final
Y1, Y2, ... Yf Lab frame Y intercept value at surface 1, 2, ...final
Z1, Z2, ... Zf Lab frame Z intercept value at surface 1, 2, ...final
U1, U2, ... Uf Lab frame U direction after surface 1, 2, ...final
V1, V2, ... Vf Lab frame V direction after surface 1, 2, ...final
W1, W2, ... Wf Lab frame W direction after surface 1, 2, ...final
x1, x2, ... xf Local frame x value at surface 1, 2, ...final
y1, y2, ... yf Local frame y value at surface 1, 2, ...final
z1, z2, ... zf Local frame z value at surface 1, 2, ...final
u1, u2, ... uf Local frame u value at surface 1, 2, ...final
v1, v2, ... vf Local frame v value at surfaee 1, 2, ...final
w1, w2, ... wf Local frame w value at surface 1, 2, ...final
A1, A2, … Af Angle (deg) between incoming ray and surface normal
P1, P2...Pf, p1, p2, ...pf Optical path to surface 1, 2, ... final surface
WFE Wavefront error
N, n, note Note describing fate of each ray

 70

Ray Notes Output: One very useful output data field is the "notes" field. Notes tell you
what happened to each ray during its trace. A ray that traces all the way to your final
surface will be noted as "ok 18" or whatever the number of your final surface is.
Otherwise, its note will be an abbreviated indication of what went wrong. The table
below lists these messages.

Table 10-3: Ray Table Notes Abbreviations and Meanings
OK NN Ray ran OK to final surface whose number is NN
mis NN Ray missed surface NN: failed to intercept it
bak NN Ray intercept lies behind the ray start, so no legal forward intercept
Dia NN Ray intercepted surface NN beyond its allowed outer Diameter
dia NN Ray intercepted surface NN within its forbidden central diameter
Ord NN Diffraction order specified is not allowed at this angle
TIR NN Total internal reflection, no refracted solution at this angle

By inspecting a list of notes results you can usually tell what is wrong (or right!) with
your optical setup. If your notes show a lot of similar complaints, that usually tells you
just what needs fixing. For example if you get a list of "Dia 6" entries, you need to open
up the diameter of surface number 6, or re-aim the rays so that they can get through it. A
series of "mis 4" entries suggests that your surface 4 is located somewhere to the side of
rays leaving surface 3. The “bak 7” result is telling you that your ray would have to go
backwards to reach surface 7. To remedy those situations you will want to reorganize the
surfaces or re-aim the rays to allow the trace to proceed.

Optical Path Output: This quantity is a diagnostic of the total delay a wavefront
experiences passing through an optical system. The path starts at zero where the ray
originates, and accumulates by an amount equal to the linear path length of each segment
multiplied by the refractive index of the medium in which that segment lies. For each ray
traced, the optical path to surface number 1, 2, etc., is computed and can be displayed in
the .RAY table using the appropriate field header P1, P2, up to Pfinal.

Wavefront Error Output: One way to quantify the overall performance of an imaging
optic is by means of its wavefront error. This is the relative deviation in optical path that
each ray experiences, compared to the average of other rays from the same object point,
corrected for inclinations and curvatures of the incoming and outgoing wavefronts. An
optical system is said to be well corrected if its worst wavefront errors are smaller than
about a quarter wavelength of its light, or its RMS WFE is less than 7% of the
wavelength. By default, there are no tag letters for your WFE field, and all rays in your
.RAY table constitute a single group for evaluating the average optical path. For this
default to be useful, the rays should all originate at a common object point at a finite
distance or at infinity. If several object points are represented within your .RAY table,
you should break the WFE calculation into groups by tagging each ray's WFE field with a
group letter, "a""Z". To compute the RMS WFE, remove any goals fields and run
InOut with Options::InOut having RMS output display enabled.

 71

Fig. 10-7. An example of a .RAY table that has a WFE field to display the wavefront error
contributed by a simple lens with a single on-axis object point. The initial ray directions U0 and
V0 were installed using the 2D Circular Ray Pattern generator, here with only 19 rays in only
three zones --- but to be useful for WFE estimation, the pupil should be more fully illuminated
using dozens of rays in five or more zones.

 72

Fig 10-8 The CATCRADLE relay optic transfers a point object to a point image without
spherical aberration. Here we trace it with a few rays to show its lack of WFE. Both the
Xfinal field and the WFE field in the ray table have been set up with an “e” in their rulers
to obtain exponential notation output --- useful when dealing with very small numbers,
which here arise entirely from numerical errors in the floating point computation.

Wavefront Error Minimization: AutoAdjustment can be invoked to minimize WFE.
To optimize an optic for least WFE, the implicit WFE goals are all zero, and no explicit
goal field is recognized or needed. Delete or behead any explicit goal fields in your ray
table. Run::AutoAdjust (see Chapter 20) will minimize the total squared WFE. As with
any optimization, it is important to fully illuminate your optic with a representative set of
ray start locations and directions. In this way your pupil will be properly filled, and your
working field will be occupied by test image points that span your image space.

 73

Chapter 11: Media and Media Tables
Media tables resemble the other text tables used with BEAM FOUR. There is a three line
preamble (title, headers, and ruler) followed by a collection of up to 999 glass records
that hold the refraction data for the glasses. Media tables are used for looking up the
refractive index for a given ray (whose wavelength is specified in your ray table) for a
given glass type (whose name is specified in the leftmost field of your optics table).

Media tables make polychromatic ray traces possible. To carry out a monochromatic ray
trace, you could just load the numerical value of the refractive index in the medium
approaching each surface into the optics table under the field header "index." That way
every ray will undergo the same refraction. In a polychromatic ray trace, however, each
individual ray needs to look up the refractive index appropriate to its own wavelength.
The media table is this lookup table.

Four media files are supplied with BEAM FOUR. One of them, GLASS.MED, has eight
glasses and three plastic optical materials at four wavelengths in the visible range. The
others list glass manufacturer’s refraction data. You may create as many media files as
you need, using refraction data from whatever sources you trust. Also, if you need to
interpolate refraction data, you can construct interpolated refraction values and build your
own media tables. Two examples are given in Chapter 26 using a spreadsheet to perform
parabolic interpolation and Sellmeier interpolation.

Fig. 11-1 The file GLASS.MED has refraction data for eight glasses and three plastics at four
wavelengths. The glass names are listed down the first field, and index of refraction is listed for
wavelengths C, D, F, and HeNe. Untitled fields such as the rightmost field are ignored by
BEAM FOUR. In this example, that rightmost field lists the Abbe v index, which is a measure
of freedom from chromatic dispersion, given by (nD-1)/(nF - nC).

 74

The media tables give you freedom in choosing the appropriate way to describe
wavelengths and glass names. The names of your glasses are listed down the leftmost
field of your glass table. These names are completely arbitrary -- none are built into
BEAM FOUR except the blank field whose refractive index is always 1.000. Of course,
your glass names cannot be purely numeric, since a numeric value in your "index" field
will be interpreted as an actual refractive index, not a glass name. Leading and trailing
blanks are ignored. However capitalization and punctuation are significant, so that Bk-7
and BK-7 and BK7 are all different glasses. At trace time, it is this list of glass names
that will be searched when a non-numeric refractive index is encountered in the index
field of your optics table. Your glasses may be listed in any order. You may list as many
glasses as you like (up to 200), but make sure that every glass that appears in your optics
table appears somewhere among your listed media.

There are two ways to specify wavelengths. For visible wavelengths and common optical
glasses, the usual way is to specify the Fraunhofer designator, which is a letter identifying
an emission line lamp wavelength. The other way is to write out the wavelength
numerically, for example in microns. This numerical description is mandatory in optics
that use diffraction and which therefore have to evaluate the wavelengths numerically.
Whichever method you use, be consistent between your ray table and your media table
where the wavelengths will be looked up. Because this is a simple string lookup, be
consistent in your spelling: 0.633 and .633 are different lookup wavelengths. You may
list as many wavelengths as you like , but make sure that every wavelength appearing in
your ray table in its "wave" field is listed somewhere in your media table.

Table 11-1: Fraunhofer Lines
Designator Wavelength, microns Element

r 0.7065 He
C 0.6563 H
C' 0.6438 Na

HeNe 0.6328 laser
D1 0.5896 Na
D 0.5893 Na
D2 0.5890 Na

d or D3 0.5876 He
e 0.5461 Fe
E 0.5270 Fe
F 0.4861 H
F' 0.4800 Cd
g 0.4358 Hg
G 0.4308 Fe
h 0.4047 Hg
H 0.3968 Ca+
K 0.3934 Ca+

Unlisted wavelengths: Often you will need to trace an optic at wavelengths not listed by
the glassmaker. See Chapter 26 “Spreadsheets” for some interpolation formulas.

 75

Chapter 12: The RUN Menu: InOut
Once an optics table and a ray table have been defined, the main menu RUN command
pops up a list of ray tracing tasks. The first of these is InOut, so named because its job is
to fill in all the data fields that you have specified in the ray table. Recall that each ray
table contains your ray-start input data, and can also have places for ray coordinate output
data to be computed during an InOut ray trace. The InOut function does two things:

• A ray trace is computed;
• The data requests in your .RAY output column headers get filled in.

Once the data are computed and displayed, you can save the ray table to have a record of
the result of the ray trace.

Recall that one available type of .RAY output data field is "Notes." Here, each ray that
runs through the entire optic without error will get the note "OK" but each ray that fails to
trace through your optic to your final surface will deliver an abbreviated message to this
field of your ray table, to help diagnose what its problem might be. For example if an
iris or other optical element is undersized, you can expect a flurry of "Dia NN" messages
showing the number NN of the offending surface. Table 10-3 in Chapter 10 lists the ray
table notes and their meanings.

If one or more goals have been specified in the ray table, then InOut can also calculate
the root mean square deviation between the final ray coordinates and these goals. This
result is shown in a pop-up box "RMS from goals" that appears when goals are present:

Figure 12-1: This popup dialog displays the
computed root mean square deviation
between the ray goals and their final ray
coordinates. When Ngoals=2, RSS radius
is also shown; it is √2×RMS average.
Nterms is the number of terms used in the
calculation = number of good rays ×
number of goals per ray. A caution
statement will appear if WFEs are mixed
with other goals (usually unwanted).

There are can be two RMS values posted in this dialog. “RMS Average” is the root mean
square deviations of all the ray coordinates from their respective means, and is available
for any number of goals. “RSS Radius” is posted when there are just two goals (usually
xgoal and ygoal, or ugoal and vgoal), and is the Pythagorean sum (RSS) of the pair of
deviations. It is larger than the RMS average of the two deviations by a factor of √2.

 76

This posted RMS value can be used to compare alternative adjustments of an optical
system. RMS reporting can be switched on or off using the Options::InOut dialog.

Figure 12-2: The Options::InOut dialog
that you use to enable or disable the display
of RMS ray departure from the user
specified ray goals.

Setting Up Goals: The RMS calculation evaluates the square root of the average of the
squared deviations between the ray goals and the ray coordinates at the final surface. To
set up this calculation, furnish your ray table with ray goals: fixed, floating, or both.
Figure 12-3 shows an example of a Cassegrain imager. Its first six rays have a common
fixed goal of 0.05 units and the next six rays use a tag “z” to set a common floating goal
which evaluates as shown. Run::InOut shows the RMS is 1.6 × 10-6 units.

The reason you might want both fixed and adjustable goals is this. Having some group of
rays specify a fixed ray goal value is the way to specify an overall system focal length.
Other rays (representing other field positions) might want variable (but common) field
positions will allow them to have distortion yet have imperfect distortion. Those floating
goals can enforce a nice tight bomb pattern but be tolerant of the actual absolute goal
location. Often, one field location will have a fixed goal, and all other field positions
will have floating goals.

 77

Fig 12-3 An imager is optimized in linear blur with one ray group goal set to a fixed 0.05
units while the other ray group tagged with “z” has a common unspecified floating goal.

 78

Chapter 13: The RUN Menu: Layout
An extremely convenient and rapid means of veritying that a trace has done its intended
job is to examine the results pictorially. Selecting Run::Layout creates an on-screen
diagram of your optical system and its rays. Layout does two things:

• A ray trace is run;
• A graphics window is opened and an optical layout is drawn.

Layout lets you manipulate your view of the optical system using your mouse. To zoom
in or out, first click the mouse to set your zoom center, then use the mouse wheel or use
the function keys F7=ZoomIn, F8=ZoomOut. Vertical zoom is F5 and F6 or Shift +
mouse wheel. To view different parts of the optic, drag the graphic around its window by
holding down the left mouse button. To twirl the optic and view it from various
elevation and azimuth angles, drag it with the right mouse button. These manipulations
are available to all the BEAM FOUR 3-D graphics, including the little cube twirling
demo Run::Demo.

Figure 13-1: Layout of a Cassegrain telescope. Features like the axes and ruler are
optional elements of layouts. Annotation such as "EYEPIECE" can be typed directly
onto the graphic once you have set your zoom setting and orientation. The annotation
font size is set in the Options:Graphics dialog for all graphics. The displayed color of
each ray is set by the ray's tag letter "r", "g", "b" in the ray table's "wave" field.

Once you have your layout properly sized and oriented, you can annotate your diagram
with text. Click your mouse to position the blinking caret appropriately, and start typing.

 79

Figure 13-2: The Options:Layout dialog lets
you set up your preferences for the features of
the Layout function. The Layout elevation and
azimuth angles are the angles in degrees from
which you initially view the optical system.
(Using your right mouse button you can of
course modify your viewing angle
dynamically.) The ArcSegments lets you
specify how many line segments are used to
represent curved arcs in your layout. Four
checkboxes let you retain your current pan &
zoom settings, show refractive parts with gray
shading and/or connector lines, and control the
visibility of retro surfaces. The six "axis"
buttons let you choose the orientation of your
optic. The onscreen rulers and coordinate axes
can be turned off, or on, with the five "Axes"
check boxes. Then, each optical surface is
drawn as eight arcs identified by eight points
of a compass; they can be selectively turned off
or on with the bottom row of checkboxes. The
default is to have them all turned on. The
artwork line weights in pixels are specified in
the bottom three boxes for rays, surfaces, and
coordinate axes. Finally, the display can be set
to white, black, or black w/ stereoscopic
artwork using the “Format” buttons.

The annotation font size and weight are chosen at Options::Graphics, (see below) and
apply to all the graphics screens, not just the Layout screens.

Diagrams produced by Layout may be captured and saved in a variety of formats. For
most purposes the File::QuickPNG function is the easiest. QuickPNG is available for
every BEAM FOUR window, text or graphic. It saves an image of the window in .PNG
format with a filename you specify using the usual pop-up file save dialog. There are
several other graphic output formats built into BEAM FOUR for working with computer-
aided design and drawing projects. See Chapter 23 for more details of the CAD graphics
output capabilities.

Layout has a host of customization features available at its Options::Layout dialog.
There you can set up a preferred initial viewing angle, and choose how the optical system
will be oriented with respect to the viewing window. "Layout Elevation" and "Layout
Azimuth" are the initial view angles, in degrees. There is a radio-button selector for
which optical system axis is to point upward in your layout diagram. Options::Layout

 80

offers checkboxes to control the appearance of your layouts, including features such as
on-screen horizontal and vertical rulers and your optical system's geometric axes. Three
display formats are available; see below.

In Layout, optical surfaces are drawn as a set of four radial arcs and four circumferential
arcs. Normally these layout arcs are all turned on, but you may modify these settings by
deselecting the appropriate checkboxes in the Options::Layout dialog to show simple
side views, cross section views, and cutaways. These are illustrated in Figs 13-3 to 13-6.

Fig. 13-3 To obtain a cross section
view in Layout, such as the one
shown here, set the Elev and Azim
options to zero, and turn off all the
“Arcs to be drawn” checkboxes
except the N and S arcs as shown in
the Options dialog in Fig 13-2.

Options::Layout has a Format selection window to let you customize the display format.
Default is a white background format, where the optical elements are drawn in black and
the rays are drawn with their specified colors or black, if unspecified. A black format is
similar but the background is black, the optical elements are drawn in white, and the rays
again are drawn with their specified colors or white if unspecified. A stereo format is
also available, in which the background is black, and the optics and rays are drawn twice:
once in blue, and again in red but from a slightly different vantage point. The difference
in view directions is controlled by the stereo parallax parameter specifying the angular
separation of the red (left eye) and blue (right eye) images, in milliradians. For most
viewers a good choice of parallax is one that makes the red and blue images separate by a
very slight amount, just a few screen pixels. The stereoscopic illusion is most effective
with a full screen in a darkened work environment. Red/blue eyeglasses are offered by
many web game retailers and video game outlets. A negative parallax value
accommodates reversed glasses. See Chapter 29 “Viewing Stereoscopic Displays.”

 81

Fig 13-4 Layout options with a
lens, an iris, and a pair of
mirrors. Top: a cross section
view shows refractors with
solid gray and shows openings
in irises and central mirror
holes. Enable the “Refractor
shading” option and disable all
arcs except the North and
South arcs. Middle: an
external side view is obtained
by keeping the “Refractor
shading” option (so you can’t
see the rays through the side of
the lens) and enabling all the
Layout arcs. The refractive
bulge on the lens surface is
transparent, so you can see
rays within the lens before they
emerge. As with a true normal
side view you can’t see iris or
mirror holes (you can of course
see everything by rotating your
view point). Bottom: If you
prefer to turn off refractor
shading, you can turn on
refractive connectors to outline
each lens.

Fig 13-5 This is the optics file that illustrates many of the Layout options.

 82

Fig 13-6 By disabling just
one of the arc groups in
Options::Layout, you can
prepare a corner cutaway
view of an optic. Top: we
show the effect of disabling
the “NE” (northeast) arc
group: all radial arcs N, E, S,
W are enabled, and all the
peripheral arcs except NE are
enabled as well. Bottom: in
this layout the radial arcs S
and W have also been
disabled, so that the enabled
arcs are just N, E, NS, SW,
NW. This way, the periphery
is emphasized.

We caution that the Layout function is not suited for precision measurement of surface
locations or ray intercept coordinates. Rather, it is a quick-and-dirty cartoon generator
that is based on the connect-the-dots principle. All the arcs plotted are really sequences
of connected straight line segments, and the circular-looking curves are really polygons.
These are quick to plot and they will reveal optical issues immediately. But
mathematically they do not stand up to close scrutiny. If you want to investigate the
Layout graphics closely, request plenty of arc segments in Options::Layout. Better is to
evaluate the ray intercept (X,Y,Z) values using the full double precision accuracy of the
InOut tables. Use the “bed of nails” concept: have a grid of parallel rays intercept the
target surface and read out the ray intercept coordinates in the .RAY table using the
Run::InOut function.

 83

Additional customization features that apply to all BEAM FOUR graphic screens are
available at the Options::Graphics dialog. (We describe these features here since this is
the first chapter dedicated to a graphics output function.) With Options::Graphics you
can choose your preferred mouse wheel directions for ZoomIn/ZoomOut, and set up the
font size and style of the text that is automatically generated for each graphic. You may
also specify the font size and style for the annotations that you add by typing onto any
graphic, and the startup size (in pixels) for each graphic window.

Fig 13-6 The Options::Graphics dialog
box offers control over all the output
features that are in common among the
graphics display functions. Wheel
direction buttons let you choose pull or
push to zoom in on a graphic. The
graphic font size and boldness controls
the text that the graphic itself generates;
the annotation font size and boldness
govern the text that you type onto a
graphic to annotate it. Initial window
size sets the size of a window when it is
first created, but of course you can
minimize, maximize, or stretch it
however you like using the mouse. Pixel
smoothing enables a software tool that
reduces jaggies on most computer
systems.

 84

Chapter 14: The RUN Menu: Plot 2D

The Plot2D function provides a way to view relationships between any two ray trace
variables. Its most common use is to produce a spot diagram which shows the positions
of the arrivals of rays at the final surface of a ray trace. A spot diagram gives an
immediate qualitative impression of the size and shape of the point spread function of the
optic under idealized conditions (no diffraction, no seeing, no motional blurring).

Figure 14-1. The Options::Plot2D is the
control panel for setting up your plot
variables and ranges. The horizontal and
vertical plot variables can be any of your
ray coordinates (x0, v3, yfinal....). Each
variable allows you to specify a range, or
span, of values to be plotted. If you set
span=0.0 (the default) you enable
automatic scaling that shows all the
available data. The plot symbol can be
selected from the four radio buttons
marked "dot style". The plot symbol color
follows the ray color assigned by tag letter
in the .RAY "wave" column, making it
easy to identify groups of rays that are
functionally related. "Which rays" lets you
choose to plot only those rays that proceed
all the way to your final surface, or all rays.
The “Additional surface” option lets you
superpose ray spots from another optical
surface onto the current defined surface
spot diagram. Finally, you may set your
preference for white (default) or black
background for your plots with the
checkbox near the bottom.

To set up the Plot2D function, start at the Options::Plot2D menu option and use the
dialog (shown above) to choose your Plot2D settings. The (xfinal, yfinal) pair of
coordinates to plot is a common choice since these are the local frame values of ray
intercepts at your final optical surface. Bear in mind though that all the internal ray

 85

variables are available for plotting on either axis, so you can make a wide variety of
diagnostic plots, not just spot diagram.

To get a useful spot diagram it is important to flood your entrance pupil with a broad
enough span of rays in all relevant dimensions. For a telescope focussed on infinity,
you’ll want to set up a range of X0 and Y0 ray start coordinates that overfill the pupil.
For a microscope or copy lens you’ll need a suitably large span of U0 and V0. Take care
to define your optical diameters to properly limit your pupils. A small number of preset
rays in your .RAY table is likely to be insufficient to densely probe your optic. Once you
have a few rays tracing properly, use the Run::Random feature (available to all graphics
screen displays) to populate your ray space with randomly generated ray starts. In this
way your Plot2D will build up in density and reveal fainter outlying regions of your spot
diagram.

Once you have set your Options::Plot2D, produce your Plot2D with the .OPT and .RAY
tables that you have loaded. By default, every good ray is shown as a dot or other
selected symbol on the diagram. The color of the symbol is the color assigned to its ray.
Good rays are those that navigate your entire optic successfully. Each InOut ray trace
note that is not “OK” will show the surface where it failed. Use these ray notes, and the
Layout function, to diagnose where and why they are failing.

Fig 14-2 This two-lens relay has significant chromatism. The spot diagram (lower right)
with a few thousand random rays contrasts the very different images in red and blue light.

 86

Other kinds of diagnostics are easily generated using Plot2D. For example a simple relay
lens would ideally have its xfinal remaining essentially constant while the incident ray
angles vary. A plot of xfinal versus U0 would then ideally be a flat horizontal line. A
linear trend in this pattern is an indication of defocus. A curvature in this pattern shows
the presence of aberrations.

Fig 14-3 Plot of final ray intercept height xfinal as a function of initial ray intercept
height X1. Red and blue spots are traces of rays having wavelengths C and F, each
filling the pupil of the lens pair.

 87

Chapter 15: The RUN Menu: MultiPlot

MultiPlot does just what you’d think: it steps through a series of parameter values and
builds a Plot2D for each. These plots can be arranged side by side or top to bottom on
the screen, making a stepped sequence of spot diagrams. It also can step two parameters
and make a 2-D grid of spot diagrams. The center of each box is the centroid of its rays.

Fig 15-1 MultiPlot (above) shows a
sequence of spot diagrams from our
TMA telescope example. This diagram
is termed a “through-focus” chart
because the successive spot diagrams are
constructed by shifting the optical
system focus through a sequence of
settings. Setup for MultiPlot uses the
popup dialog Options::MultiPlot seen
at left. In this example there is just one
horizontal step variable: Z2 (the
secondary mirror position) and it is
assigned the replacement values shown.
Here we have no vertical stepped
parameter. Diagram scaling is controlled
by the hor span and vert span values:
zero or blank gives automatic scaling, or
you can enter a specific value (e.g. your
pixel size) to show scaling relevant to
your system. Ten different numerical
diagnostic data are available to title each
plot box. Here, “m” (rms) is checked
which produces the rms values shown in
the top figure.

 88

To create a MultiPlot, start with an ordinary spot diagram using Plot2D. Set up your ray
table to illuminate your pupil from a single object point, and set your Plot2D ray
variables to display a nicely filled aperture. Then decide what ray start parameters
and/or optics parameters are to be stepped through ranges to explore your optical system.

The step parameter can be a ray starting value (X0, Y0, Z0, U0, V0, or W0) or optics
table parameter (X1, X2, X3, etc; Y1, Y2, etc; Z1, Z2, etc; pitch tilt or roll (P1, P2, ...,
T1, T2, etc), curvature (C1, C2...), or asphericity (A1, ...). Up to nine successive plots
can be displayed along either or both axes. Your step pattern modifies your system (just
temporarily!) from its nominal design, a convenient way to explore “what-ifs.”

In MultiPlot, the displayed spot diagram ray variables within each box can be any of
those accessible to Plot2D, namely ray coordinates in global (upper case) coordinates or
local (lower case) coordinates, or optical path. See Chapter 14 “Plot2D” for full details.
Spot diagrams most commonly are built to illustrate the final-surface ray coordinates
xfinal and yfinal if there is a real finite image, or ufinal and vfinal if the image is at
infinity. As with any spot diagram, it’s essential that your illuminating beam fill your
optic’s entrance pupil so that the pupil and its aberrations are well sampled. Use plenty
of rays. The built-in ray generator can be used to set up a pupil containing dozens or
hundreds of ray starts, sufficient to detail your point spread function or wavefront error.

The simplest MultiPlot is a through-focus diagram. An example is shown in Fig 15-1.
The idea is to illustrate how the point spread function varies as the optical system focus is
changed. So, to create one of these, first identify some optical parameter that controls
your system’s focus. This is often the Z axis location of the final focal surface, or it can
be some internal element surface curvature or surface location that controls focus, such as
in the TMA example above where the secondary mirror’s axial location is represented by
Z2. Then fill in the rest of Options::MultiPlot for your computation.

How much image space should the individual plot boxes span? To start you’ll want to
leave the box spans empty, or 0.0, which gives automatic sizing, fitting your largest spot
diagram into the boxes. This will give you an overview of the diagram shapes. The box
size is displayed at the top of the finished chart. Later, you may wish to set specific
nonzero values for the box spans to show a nominal round-number size or a pixel size for
comparison.

A compound MultiPlot is produced by choosing two step parameters. An example is
shown in Fig 15-2, which is a sequence of through-focus plots for each of three field
positions. Again, Options::MultiPlot sets up this additional parameter, as you can see in
the left hand portion of the figure. The three rows of spot diagrams show that this TMA
telescope is well corrected at off axis angles of U0=0.005 (bottom row) and U0=0.01 (in
the middle row) but not nearly so well corrected further off axis at U0=0.015 (top row).

 89

Fig 15-2 MultiPlot (top) with a 5x3
grid of spot diagrams computed from
the TMA telescope example. The
horizontally stepped parameter is
again the secondary mirror location
Z2 which controls telescope focus. We
have added a vertically stepped
parameter: the ray group off-axis
angle U0 which explores the vertical
field of view. In the
Options::MultiPlot dialog at left you
see how these are introduced: the three
U0 values diagrammed are 0.015,
0.010, and 0.005. As many as three
optics or ray-start parameters can be
stepped at once.

 90

Statistics can be calculated and displayed for each box. These can be selected using the
checkboxes along the bottom row of the Options::MultiPlot dialog:

H: the value of the topmost horizontally stepped variable for each box;
V: the value of the topmost vertically stepped variable for each box;
n: the number of ray hits shown in each box;
h: the mean of the horizontally plotted ray variable = horizontal center value;
v: the mean of the vertically plotted ray variable = vertical center value;
hh: the root mean square of the plotted h deviations from their mean;
vv: the root mean square of the plotted v deviations from their mean;
hv: the root mean of the (h.v) deviations, negative if <h.v> is negative;
s: the root of hh2 + vv2 which is the average radius in two dimensions;
m: the root of 0.5*(hh2 + vv2) the average radius projected onto one dimension.

When you are displaying more than a few plot boxes, they are small and there isn’t room
for more than one or two of these results to be shown. In a pinch you can reduce the
display font size with Options::Graphics.

You can of course display just one plot box. With the step variables left blank, a 1x1
MultiPlot acts very much like Plot2D but with spot diagram statistics available. It also
offers a way to temporarily commandeer one or two optics parameters or ray start
coordinates: just fill in one or two step variables and the desired center values.

 91

Chapter 16: The RUN Menu: Map

The preceding chapter helps you explore the field of an optical system or some range of
system parameters: it shows how the spot diagram of a single field point varies. The Map
function is similar, but instead of showing the spot diagram details, it shows a color
coded chart that indicates how the wavefront error or point-spread function varies with
ray or optics parameters. Before using Map, set up your optics and ray information for a
single field point, and verify that your ray trace proceeds successfully, i.e. most of your
rays reach your final surface. Then, Map facility can show you the effects of varying one
or two parameters over specified ranges. This setup is done in the Options::Map dialog,
sbown below in Fig 16-1.

Fig 16-1: The Options::Map dialog lets you
set up the Map parameters. The four radio
buttons gives you the choice of mapping the
rms WFE, the peak-valley WFE, the rms 1D
PSF or the rss 2D). Each axis has its own
plot variable that can be chosen from among
the six ray start variables (X0, U0, etc) or
from the positions, orientations, curvatures,
or asphericities of any of the optical surfaces
(Y2, C4, etc). If you are exploring ray starts
and are not beginning your trace at the
entrance pupil, you may want to a parallax
variable to keep your rays centered on the
pupil while being launched from a range of
positions or angles. Up to 100 by 100 map
points may be specified. You may specify a
maximum percent vignetting, beyond which
the map cells will turn gray as a warning of
light loss. You may specify the map’s aspect
ratio, i.e. ratio of width to height, to help
illustrate the relative range of field spans for
the two axes. Finally, if an output filename
is specified, the results will be saved as text.

Parameters to be mapped can be any combination of surface parameters (locations, tilts,
curvatures, aspherics, refractive indices provided they are not looked up from a media
table, etc) and ray start coordinates (X0, U0, etc). The option “Max % vignetting” allows
you to tolerate a fraction of rays getting lost at each parameter step. The default value,
zero, causes any lost ray to turn its map cell gray, meaning no valid WFE or PSF for that
setting. If your application tolerates a few percent lost rays you can change this option to
suit your needs. We caution that the lost rays are probably the most discrepant rays with

 92

regard to WFE and PSF, and their loss will surely bias your map towards smaller values
of WFE or PSF.

The text output feature allows you to save the map results in numerical form for further
work. Each plot point produces one text record containing seven values: the values of the
stepped variables on the horizontal and vertical axes, the ray count for each map point,
the centroid {X,Y,Z} for those rays, and the value being mapped. If you specify a
filename ending in “.csv” then the output fields will be comma separated values, for
easiest entry into spreadsheets. Otherwise the fields are spaced to fixed width.

Fig 16-2 Illustrating the first few lines of a Map text output listing.

Once Map is set up, the Run::Map menu item starts the mapping process. In a map with
41x41 field points, like the present example, the computation may be time consuming,
and BEAM FOUR shows its the map progress as successive field points are added and
the thermometer is updated. The color scheme assigns blue to the least-blur map
locations and red to the worst-blur locations. The units are the same as used in your
geometrical definition of your optic (meters, mm, etc).

Fig 16-3 Example of a map, showing the RMS WFE for an aspheric singlet lens as a
function of the off axis illumination angles V0 and U0. Optics with greater complexity
have correspondingly more complicated maps.

 93

Fig 16-4 Another example, showing the RMS WFE for a three-mirror anastigmat
telescope as a function of the off axis illumination angles V0 and U0.

Choosing your parallax values: parallax is needed when your ray starts do not lie in the
same plane as your entrance pupil. The idea is of course to displace the ray starts for
each off-axis illumination angle so that the pupil remains properly illuminated. At small
angles, the parallax needed per step is –Ustep*L where Ustep is the step size in U0, and L
is the separation between the ray start plane and the pupil plane. However if there are
intervening optics, or if high accuracy is needed, it is important to check the pupil
stabilization. To do this, in your .OPT file temporarily set Nsurfs to the pupil surface,
and run Map, saving its output file as (say) Test.csv. Then examine Test.csv: if the pupil
has been stabilized, the centroids Xf and Yf will be independent of U0 and V0.

 94

Chapter 17: The RUN Menu: Plot 3D

Plot3D serves the same purpose as Plot2D but is most useful when there are two
independent variables that jointly control some feature of your trace. As an example we
may ask, how does optical path vary over the pupil of the relay optic shown in the
previous chapter? Figure 17-1 below shows Pfinal as a function of the X1 and Y1
coordinates of each ray’s trace. The red and blue ray groups are separated owing to the
greater greater optical thickness (higher refractive index) of the lenses in the blue. The
variation in path over the pupil is evident.

Fig 17-1: Example of the Plot3D function. Each plotted point has three display
coordinates selected from each ray's trace, using Options::Plot3D. Each coordinate can
be chosen from more than a dozen ray variables at each optical surface, so that highly
customized diagnostic plots can be generated. Here, the Run::Random feature has been
run to augment a small number of user-specified rays, to fill in the optical relationships
among the chosen ray variables.

In an optic that is to be nearly diffraction limited it is important that the wavefront error
remain nearly constant over the pupil, for all wavelengths and field positions of interest.
The Plot3D function is well suited for constructing such displays. Figure 17-2 below
shows a peak-to-valley wfe that is about 150 nm, nicely suited for work at visible and
near infrared wavelengths. To make a plot like this, use the Options::Plot3D dialog to set
the three plot variables: A=X1, B=Y1, and C=WFE. You can use the default spans to get

 95

a reasonable image, or tailor the individual spans manually for an improved presentation.
The Run::Random feature is used to populate the diagram with many thousands of rays.

Fig 17-2: Wavefront error over the pupil of a three-mirror anastigmat telescope that has a
central obstruction and a three-legged spider, for a single off axis field point.

The Plot3D output function is set up at the Options::Plot3D dialog (see Fig 17-3 below).
There, the three plot variables are specified, along with their plotted spans. Setting a span
to zero (the default) lets BEAM FOUR select an automatic span value that shows the
range of the ray variables presently represented within your current ray trace. The View
Elevation and View Azimuth let you choose your starting viewpoint angles in degrees,
but of course you can modify this view by right-dragging the plot with your mouse. Four
dot styles are available for plotting ray triplet coordinates, chosen with the radio buttons.
The “Which Rays” dialog lets you elect to plot all rays that have proceeded far enough to
define the three specified coordinates, or restrict the plot to good rays only, i.e. those that
propagate all the way to the final defined surface.

Like Layout, three drawing formats are available: white background, black background,
and a stereoscopic display. See Layout (Chapter 13) and Stereo (Chapter 29) for details
of these features.

 96

Fig 17-3: The Options::Plot3D setup
dialog. The three display axes are
identified here as A, B, and C. Specify
which ray variable is to be mapped onto
each axis. You can also set its display
span. The default span is zero, which gives
automatic scaling for that axis, based on
the range of ray coordinate values found in
your current optical trace. The initial view
direction is specified by the elevation and
azimuth angles, in degrees. Once
displayed, the view direction is easily
changed with the mouse right-button twirl
feature, letting you get the best view of
your data. The “Dot style” box lets you
choose between four plot symbols: a dot, a
plus sign, a small square, and a diamond. In
the “Which rays” box you can elect to plot
all rays that reach the three surfaces
specified in A, B, and C, or plot only the
good rays (those that arrive at your final
surface). Finally there is a display format
box, letting you specify a white
background, a black background, or a
stereoscopic display with red and blue plots
superposed onto a black background with a
selectable parallax. (You’ll need red/blue
spectacles to see this.) For best results,
choose a parallax that gives a slight
divergence between the red and blue plots.

 97

Chapter 18: The RUN Menu: Histo 1D and MTF
 A histogram is a way to visualize the probability distribution of a single variable. In
optics, when a pupil is illuminated in a realistic way, a histogram of any one of the
resulting ray variables yields a view of how the intensity of light is distributed with
respect to that variable. BEAM FOUR has a built-in one dimensional histogram
function that lets you gather a distribution of any computed ray variable and display it.
This can then be used qualitatively, illustrating the breadth of an image feature, and
quantitatively to evaluate the moments of the distribution or --- with the included MTF
(modulation transfer function) feature --- the Fourier spectrum of the distribution
showing the relative amplitudes of the spatial frequencies in the distribution.

Fig 18-1 The basic one-dimensional
histogram is set up using the
Options::Histo1D dialog shown at left. The
resulting 1D histogram, built from 40000
random rays, is shown at the upper left. Its
chief use is quantifying the distribution of
energy along any one axis within an image.
Once it is computed, its MTF can be
calculated with Run::MTF and the results
are shown at the upper right. The histogram
counts can be saved as a numerical text file
using File::WriteHisto.

The automatic span feature of Histo1D yields reasonable resolution on the histogram but
not particularly good resolution in MTF. For finer MTF plots choose a wider histogram
span i.e. set manual bounds further below and above the image centroid position.

 98

Chapter 19: The RUN Menu: Histo 2D

A two-dimensional histogram is a view of the relative frequency of any pair of ray
variables. BEAM FOUR generates these. The example here shows the distribution of
(ufinal, vfinal) values produced by the CASS.OPT telescope illuminated by the ray file
CASS.RAY at 3 milliradians off axis. Compare with the 1D histogram results in the
preceding chapter.

Fig. 19-1 Example of the Histo 2-D
function. Two ray variables are chosen at
the dialog Options::Histo2D. Then,
Run::Histo2D traces the table rays and
produces the histogram. Additional rays
can be generated using Run::Random to
populate the histogram more fully.
Graphic display features Pan, Zoom, and
Rotate use the mouse buttons and wheel, as
with Layouts. Each graphic can be written
to disk in a variety of CAD formats
described in Chapter 23 "CAD Functions"
or numerically using File:WriteHisto.

 99

Chapter 20: The RUN Menu: AutoAdjust

Often an optical designer will have a conceptual optical train but will need computational
help in setting some of its parameters. Element locations, surface curvatures, and
aspheric coefficients are likely examples. BEAM FOUR has a built-in AutoAdjust
capability to fine tune an optical system to reduce the sum-of-squares of an optical
demerit function defined on the final ray coordinates, with the adjustable parameters
being tagged in the .OPT table. This least squares optimizer works for parameters that
are continuously differentiable (curvatures, locations, and most of the surface descriptors
in the .OPT table) but not for discontinuous choices such as specific glass name or
various numbers of optically active surfaces. So the autoadjust process is useful when
you have a feasible optic --- one that at least moves its rays from their starting points to
the final surface --- but not when you lack a starting point design.

AutoAdjust can adjust ray starts as well as optics parameters. By marking some ray starts
as adjustable, you can discover what aiming conditions rays must satisfy to reach their
intended targets. This can be particularly useful if a number of ray starts are ganged
together (see below) so that an entire beam can be targeted in an optimum way.

Designating adjustable parameters is accomplished the same way for optics tables and
ray tables. In either case, the tag letter or symbol is the key. The tag is the character that
follows a parameter value and shows the end of the data field. The default character is a
colon, indicating that the parameter is not adjustable. Editing the table to replace one or
more data tags with question marks or tag letters makes them autoadjustable.

Independent variables are tagged with question marks. Each “?” variable is adjusted
independently, without a direct connection to any of the other adjustables.

Ganged variables are tagged with letters. Every variable within an optics or ray table
field that is tagged with an “a” for example will receive the same change in value as
every other “a” variable in that field. Any letter will do. If your co-named variables share
the same starting value, they will remain equal throughout the autoadjustment process. If
they are set up with some initial difference, they will retain that difference. Up to 26
ganged adjustables can be simultaneously present within any one field --- but in almost
all optical design situations just a few will do the job.

Anti-ganged variables can also be set up. If a variable is tagged “R” for example, then
other parameters in the same optics or ray field tagged with “r” will be linked to the “R”
adjustable but with the opposite sign. Changes to one will occur to the other but with the
opposite direction. This way you can set up symmetrical optics for autoadjustment and
have them remain symmetrical throughout the adjustment process.

 100

Focussing an on-axis point object takes just two steps. We assume here that your optic
is coaxial and that your image centroid will therefore lie at (xfinal, yfinal) = (0, 0). We
also assume that you have identified a few optical parameters that you want BEAM
FOUR to adjust, and that you have tagged each adjustable parameter with a question
mark tag. Set up two goal columns, xgoal and ygoal. Fill in zero values for both goals
for each ray: xgoal and ygoal for a real image, or ugoal and vgoal for an image at infinity.
(If you have a virtual image, interpose a retroreflector to make it real.). Then click
Run::Autoadjust. BEAM FOUR will compute a sequence of improvements --
adjustments of the parameters that reduce the root-mean-square difference between the
final ray coordinates and the goals specified.

Fig 20-1 AutoAdjust progress dialog. It counts off the
iterations run and displays the number of comparison
points (good rays × goals per ray). The successive values
of the RMS average deviation between rays and goals are
shown. RSS radius (root sum square of x and y blurs) is
shown only when Ngoals=2. A caution appears only when
WFEs are mixed with other goal types (usually
unwanted). While running, the button function is [STOP].
When complete, the button changes to [DONE].

Focussing while holding magnification constant is only slightly more complicated.
You will need to set up some ray starts representing two object locations, for example
one location on axis and another location off axis. Then for the first set of rays, show
goals that are zero, and for the second set of rays show goals that are nonzero.

Focussing an off-axis object takes just three steps. We assume here you don't know or
care where the optimum location (x,y) where the focus will fall, but you simply want it to
be as tiny a spot as possible. We assume you have a few unknown optical system
parameters that you'd like BEAM FOUR to adjust for you. Here is what to do.

1. Set as goals xgoal and ygoal, and fill in goal values of 0.0 for these columns. Note
the use of lower case here: ray coordinates measured in the frame of the final surface.

2. Set as adjustables the X and Y values for the final (focal) surface, in addition to any
other adjustables you have chosen to be optimized. This means put columns in place in
your .OPT table headed by X and Y if you do not already have them, and fill in starting
values for X and Y for your final surface if they are not already specified. Put question
marks into the tag columns for Xfinal and Yfinal.

3. Run AutoAdjust. During this run, you will see the location of your final focal
surface X and Y be adjusted, along with your other optical parameters. The final values
of X and Y will be the locations where the centroid of the spot pattern lies since in the
frame of the focal surface the average xfinal = yfinal = 0.0.

 101

Examples: We now turn to a few examples showing how the tables are to be set up for
an adjustment run. Bear in mind that these toy examples are highly simplified, to show
the syntax of the table entries compactly. Realistic optimization will usually require a
large number of rays that your pupil and span a representative range of field positions.

Example 20.1: To begin, Fig 20-2 shows a positive power lens making an image of a
point source at infinity: the incoming rays are parallel but are located at various heights.
Notice that the final (third) surface has a Z axis location that is initially set to 4.00, but it
has a question mark tag, indicating that it is to be adjusted so that the best focus position
can be found. The bottom figure is a layout showing this starting situation. The rays are
good, i.e. they reach the final surface.

Fig 20-2 A positive lens (convex & plano) is illuminated with parallel rays. Initially it is
seriously out of focus. Top: initial optics table. Middle: ray table. Bottom: layout.

 102

After clicking Run::InOut, the Z value of the final surface becomes 3.12613 (Fig 20-3).

Fig 20-3 After autoadjustment, the optics table (top), ray table (middle), and layout are
as shown here. The optimization has minimized the least squares deviation of the ray
final values from their common declared goals, all equal to 0.0.

 103

Example 20.2: Next let’s look at another situation, namely moving a lens. In Fig 20-4
we see an .OPT table set up so the front and rear surface locations of the lens are adjusted
together. The .RAY table is the same as Fig 20-3. After adjustment the lens has moved
to a new Z location as shown in the middle and bottom parts of the figure.

Fig 20-4 The front and rear surfaces of the lens have Z positions that are tagged with the
same letter (here, “P”) which gangs them together. Middle: after autoadjustment, they
have migrated to the positions shown. Bottom: Layout after adjustment.

 104

Example 20.3: Next let’s alter a lens curvature, changing its power so as to place its
focus at a specified location. In Fig 20-5 we show the .OPT table and its layout (rays are
as before); here the front surface curvature is tagged with a question mark making it
adjustable. After adjustment, the .OPT table and its layout are altered as shown.

Fig 20-5 The curvature of the first lens surface is adjusted here, to place the lens focus at
a given location (here, Z=4). Top pair: before adjustment; bottom pair, after adjustment.

 105

Example 20.4: Next let’s simultaneously adjust the front and rear curvatures of our
positive lens to make a doubly convex lens that gives the smallest spot height for our
given ray bundle. In Fig 20-6 we show the initial .OPT setup: both front and rear
curvatures are tagged with question marks. The .RAY table is as before.

Fig 20-6 Simultaneous adjustment of front and rear curvatures of a lens. In the setup
(top) the .OPT table tags both curvatures with question marks. The initial curvatures
need be only good enough to allow the rays to make through the system. After
adjustment (middle, bottom) the curvatures are optimized for this ray group.

 106

Example 20.5: Now let’s look at a classic discovery (R. Descartes, 1637) that spherical
aberration can be entirely eliminated from a lens by making it an appropriate conic
section of revolution. Here, we illuminate a plano-convex lens with parallel rays and
mark its rear surface curvature and asphericity as adjustable, and then optimize. In Fig
20-7 we show the result.

Fig 20-7 Adjusting a plano-convex lens to eliminate its spherical aberration by means of
its conic constant. Top: ray setup; bottom pair, after adjustment.

The analytic solution for this problem is Curvature = -Power/(N-1), which is true for any
lens whose rear surface alone is curved. The Descartes solution for zero spherical
aberration yields Asphericity = -N2. You can verify that these conditions are met in this
example.

 107

Example 20.6: Next let’s look at a refractive relay lens with equal conjugates: the object
and image distances are the same and the magnification = -1. In Fig 20-8 we mark the
front and rear lens curvatures as adjustable using tags “q” and “Q” (any letter will do).
These curvatures will remain opposite if they are started opposite in value. Because up to
26 letters are available, up to 26 variables in a field could be tagged, although usually
only a few are needed. At the same time the asphericity is adjusted for both surfaces,
tagged “h” and “h” so they remain equal if started equal. The result is a back-to-back
Descartes relay that is free of spherical aberration. For other examples of such relays, see
Hecht and Zajac “Optics” Addison-Wesley 1974 pp.101-103.

Fig 20-8 Adjusting two curvatures to be linked together but with opposite changes is
done using tag letters of opposite case. Top: .OPT setup, note the “q” and “Q” tags. At
the same time the asphericities are tagged the same to make them change together.
Middle: optimized optic. Bottom: layout of the optimized optic.

 108

Example 20.7: Next let’s look at an autoadjustment set up using floating goals. Our
example will be a Cassegrain imager working over a wide enough field that its field
curvature and distortion are both significant. We fix focal length but ignore distortion.
The fixed goal for the first eight rays fixes the target focal length at 0.05/0.01 = 5 units,
while the floating goal (rays 9-16) accommodates the distortion at mid field height.

Fig 20-9 An imager is optimized in linear blur with one ray group goal set to a fixed 0.05
units while the other ray group tagged with “z” has a common unspecified floating goal.

 109

Example 20.8: Finally let’s work an example in which the ray starts are adjusted to
deliver their final image spot to a given goal position on the focal plane. This is the
reverse of the previous examples – the optic is fixed but the ray starts are the unknowns
being solved for. We’ll use the Cassegrain imager from the previous example but it will
have fixed parameters (no question mark tags). The ray table is started with viable rays
sharing the same U0 value in each group, but tagged so they vary together during
adjustment. AutoAdjust fixes up the ganged ray starts to minimize the RMS discrepancy
between the xfinals and the xgoals.

Fig 20-10 A Cassegrain imager is held fixed while its ray start directions are adjusted to
best meet the given goal positions. The top eight rays form one group whose xgoal is
0.05 units, and the second eight form a second group whose goal is 0.025 units. After
running AutoAdjust, the best fit values of the ray start U0 values appear in the ray table,
as shown.

To be more realistic it is important to fill the pupil of the optic with a representative
group of rays, not just the eight rays spanning a range of X0 shown here. Properly filling
the pupil will help give a fair estimate of the input-output relationship for your optic,
including the various aberrations that may be present.

 110

Options: For most purposes, AutoAdjust can be run at any time you have set up your
optics table or ray table appropriately. There are three optional parameters, however, that
might need some fine tuning for special purposes. These are shown in Fig 20-11 below,
with the help of the Options::AutoAdjust dialog. The first of these parameters is “Step
Size” with a default value of 1E-6. It is used in taking finite-difference derivatives of
your optical demerit function. This value is appropriate when the numerical values for
the things being adjusted are of the order of 1: spacings, curvatures, and angles. If you
are planning to autoadjust quantities of much smaller or larger magnitude you may wish
to change the step size so it is of the order of 1E-6 of the things being adjusted. The
second parameter is the maximum number of iterations that AutoAdjust will perform
before it exits. Usually only a few iterations are needed. On large multivariate problems
you might need to raise this ceiling. Of course you can abandon a run at any time to
make changes in the optic, the rays, or the adjustment parameters as needed.

Figure 20-11: Options:AutoAdjust is a
dialog with just three user settable
parameters. Step Size fixes the numerical
increments used in determining ray
derivatives. MaxIter sets a ceiling on how
many iterations are run automatically.
Tolerance sets the smallest reduction in the
computed RMS that will continue the
optimization iterations.

Minimizing wavefront error (WFE) is accomplished without setting any explicit goals,
since the goal is always to have zero wavefront error. If your ray table has any goal
columns, delete them, or at least behead them (blank their field headers) for the WFE
work. Because WFE is determined from the differences in optical path among rays that
contribute to a given field point, it is important to declare how the WFE entries in your
.RAY table are grouped: one group per field point. Use common tag letters at the ends of
your WFE fields to show this grouping. Then, in your .OPT table, identify any adjustable
parameters in the usual way: question mark tags for isolated adjustables, and tag letters
for parameters that will move together as a gang. Then click Run::AutoAdjust to start
the optimization process.

Troubleshooting AutoAdjust

• Turn off all Diameters since optimization will stop rather than lose any rays;
• Use plenty of good rays to make the problem well-defined;
• Start with just one or two of the most critical parameters adjustable;
• Do your fine tuning after a close approximate adjustment is achieved;
• Use Layout or Ray “notes” to see where a trouble spot might lie;
• Check robustness by repeating the run from several starting points.
• If Run::AutoAdjust is gray: goals present? adjustables present? Rays OK?

 111

Chapter 21: The RUN Menu: AutoRay
AutoRay is a feature that sets up individual ray starts that deliver rays to specified
internal goal positions. Unlike AutoAdjust, AutoRay solves for one ray at a time,
holding the optical system fixed. Its usual use is to populate an internal pupil with a
homogeneous pattern of rays. Because the pupil is internal, the ray start coordinates
(positions X0,Y0 or directions U0,V0) have to be solved for each ray.

Fig. 21-1: A wide field lens with an internal pupil (the 20mm diameter iris that follows the
second lens element). The initial rays fail to fill that pupil. AutoRay adjusts your ray starts
to deliver the pupil coordinates that you specify, 1D or 2D.

Consider the five-element wide field lens in Fig. 21-1. Rays start outside the lens in three
parallel groups. But these initial rays do not fill the internal pupil (surface 5). To assess
the lens performance, we need to populate that internal pupil with a uniform distribution
of rays, given by a ray generator as ray goals. How to arrange each ray start to (a)
deliver its ray group direction (easy!set U0, V0) and but also (b) land at the right place on
the internal pupil? This is determined by X0 or {X0,Y0} through a rather nonlinear
optical calculation for each ray. That calculation is what AutoRay performs.

 112

Setup for AutoRay is shown in Fig 21-2 below. Here, three key temporary changes have
been introduced to the tables:

• In the optics table, the number of surfaces has been reduced to equal the internal
pupil surface, so that ray goals will apply here, not at the eventual focal plane.
You may also need to remove, or behead, Diam and diam fields to allow
adjustment to proceed;

• In the ray table, the first ray in the column(s) to be adjusted is given a question
mark tag, marking it (and those below it) as AutoRay adjustment targets;

• In the ray table, goal coordinates are entered, representing positions wanted for
each ray when it arrives at the pupil.

Fig. 21-2: Illustrating the changes to the .OPT and .RAY tables, set up to run AutoRay.

With this setup made, click Run::AutoRay. The ray table’s X0 values will recalculate
and display themselves, and the Xfinal values will correspond to the Xgoal values. Ditto
for Y0, Yfinal, and Ygoal if you have done a 2D setup.

Fig. 21-3: Showing immediate results of having just run AutoRay. The new X0’s bring
the the surface 5 (pupil) Xfinals into agreement with the specified Xgoals.

 113

The final step is to undo the three temporary alterations introduced for the AutoRay run.

• In the optics table, restore the surface count and Diams;
• In the ray table, replace your question mark tag(s) with colons;
• In the ray table, replace your pupil goals with your focal plane goals.

These changes are illustrated in Fig 21-4 below.

Fig 21-4 Illustrating the system performance with adjusted ray starts. Notice that the
internal pupil is now uniformly filled.

The example here shows how to use AutoRay to fix up ray start positions to fill a one
dimensional internal pupil. This task is appropriate for an optic focused at infinity. For
an optic with a finite object distance, like a microscope, the ray start positions correspond
to field locations and the pupil must be filled by setting ray start directions, not positions.
AutoRay solves this problem as well: just substitute your {U0,V0} pairs as the
adjustment targets, not your {X0,Y0} pairs.

 114

Chapter 22: The RUN Menu: Random

Once you have set up an optic and an illuminating beam, you will possibly want to fill
your pupil with a huge number of random rays to obtain estimates of any downstream ray
variables or combinations of ray variables. The Run::Random menu function does
exactly this function for layouts, plots, and histograms. For most on-screen graphics, the
Run::Random menu item becomes ungrayed, allowing it to be clicked and begin
delivering randomly generated rays into your optic.

Figure 22-1: The Options:Random dialog
box lets you set up how frequently your
screen graphic will be refreshed with a
stream of random rays. You may also
specify when the ray generator should
stop: at a given maximum number of ray
starts, or a number of successful ray
finishes. The random ray start locations,
given by (X0,Y0,Z0) can be generated as
continuous distributions from within your
.RAY table’s extreme values, or as a
discrete triplet taken verbatim from a
random choice of one of your table rays.
Similarly the ray start directions given by
(U0,V0,W0) can be chosen to be
continuous or discrete. Five probability
distributions are available: most common
is the uniform distribution which gives
equal probability for all ray start values
within your start range. Cosine is
centrally peaked, and Quartic Bell is bell-
shaped and more concentrated. Gaussians
and Lorentzians offer specified
concentration = half width of your span
divided by the 50% probability width of
the distribution.

The range of the continuous random ray coordinates is controlled entirely by the range of
ray starts found in your ray table. That is, the X0 value of each random ray is a
uniformly distributed random number lying between the extreme values of X0 found
among your current rays. Similarly for Y0, Z0, etc. If you have several wavelengths
appearing in your ray table, then each random ray will be assigned a random choice from
among those discrete values. If your ray table is set up to span your optic’s entrance
pupil, then the resulting random rays will also span this pupil. Be careful to fully define

 115

your pupils with circular or elliptical apertures if they are not rectangular, since these
random ray starts will fully span a rectangular space.

The computational speed for random ray generation depends on the complexity of the
optical system being traced and on the complexity of the graphic being updated as well as
the processor performing the calculations. Choosing a large number of random rays per
screen refresh (for example 10000 rays) makes for the quickest calculation, while a small
number (for example 100 rays) leaves more opportunities for other tasks to use your
computer’s resources. For a simple optic such as the one or two-lens relay, and a simple
display such as Plot2D, you can expect to see the order of 10,000 rays per second being
traced and plotted on a typical personal computer.

 116

Chapter 23: CAD Graphics Output

All the BEAM FOUR screen graphics functions have the ability to create precision CAD
graphics files that can be exported into a variety of drawing, drafting, and illustration
software. Unlike the WYSIWYG window copiers File::QuickPNG and File::Print/PDF,
the CAD output files are complete images, not cropped by the current view. Using CAD,
WYSIWYG is furnished by your CAD software. The file output types supported are…

• Encapsulated PostScript
• Plotter (sizes A, B, C, D, E)
• DXF for two dimensions
• DXF for three dimensions

The Options::CAD dialog lets you set up your CAD selection.

Figure 23-1: The Options::CAD dialog
lets you specify your preferred graphics
output format for use in other applications.
Encapsulated Postscript (.EPS) files are
best used with document preparation
software which can read them directly.
Plotter files (.PLT) are of course
compatible with mechanical plotters but are
also read by many CAD software packages,
as are the .DXF file formats. Plotter files
are digitized into plotter units, while DXF
files carry the user coordinates and
dimensions, in your choice of 2D or 3D
format. DXFs are commonly used when
drawing layers need to be assembled with a
common dimensional plan.

The PostScript file format was developed by Adobe Systems Incorporated as a document
description language that can be used by printers and by document creation software. It
has become widely used because it is independent of platform and has remained highly
stable over many years of use. BEAM FOUR produces encapsulated PostScript files.

 117

They are usually given the filename extension .EPS and are easily imported into almost
any kind of page composition software. When you are prompted for a file name, include
the suffix .EPS to assure portability. PostScript files are readily converted to widely
usable .PDF page description format files using Adobe Illustrator or Distiller. If you are
using Mac OS-X you have a .PDF file writer built into your print utility and can use that
feature to create .PDF files of any of your work.

Plotter files conform to the Hewlett-Packard Graphics Language (HPGL) and are most
commonly used in a technical CAD environment. These files contain sequences of
instructions that move one or more plotting pens. They can be plotted directly by most
kinds of plotters, and are readable by most varieties of CAD software.

DXF files were developed by Autodesk Incorporated for its AutoCAD series of products
and have become highly standardized throughout the drafting industry. Technically, a
DXF file can contain a diverse collection of database information such as fonts, shadings,
line styles, etc. What BEAM FOUR supplies is the "Entities" portion of a DXF file,
which is listing of the vectors to be drawn and the 2-D or 3-D coordinates of each
endpoint of each segment. This format is best used in a setting where the optical surfaces
and rays are to be imported into a more complex drawing showing all aspects of an
assembly (mechanical, electrical, ... as well as optical). Unlike the other graphics
formats, the coordinate numbers in a DXF file are expressed in absolute user units, not
page coordinates or plotter pen steps. This fact allows drawings from several sources to
be precisely combined (provided of course that the coordinate systems are consistent!).

DXF viewers are commonly available from several CAD suppliers. For the PC platform,
Autodesk offers the free “DWG True View” product. For Mac users there is the free
viewer from eDrawings “Viewer for Mac OS X” versions 10.4 and up. Each offers ways
to explore and measure 2D and 3D DXF files.

Some editions of BEAM FOUR support a "Quad list" graphics output format which is
specific to this application (not an industry standard). A quad list is a text file that lists
the sequence of vectors generated within BEAM FOUR in creating its 3-D vector
artwork. Each vector is a "quad" containing four pieces of information: the X, Y, and Z
values of a point in 3D user space, and an action descriptor for that point. Actions are
starts or ends of line segments, vertices of polylines, displayed characters, color or
shading information, or comments.

Finally, the two radio buttons at the bottom of the Options::CAD dialog allow you to
specify your choice of orientation on the page, portrait or landscape.

 118

Chapter 24: The Options Menu

The Options menu lets you set your preferences for the many functions that BEAM
FOUR provides. Each menu item opens a dialog with controls for setting the appropriate
detailed preferences that apply to each ray tracing function. Your preferences are stored
every time you make a change, and your most recent set of user options will be reloaded
each time you start the program. Changes in your Editors preferences are sent
immediately to all editors currently on-screen and will apply to future editors as well.
Changes in any specific graphics display apply to future displays and are also sent
immediately to the display of that type if one is currently selected (in front of the other
windows), but not to others in the background. This feature allows you to have several
output display formats on screen at the same time.

Options::InOut has just one checkbox, enabling the display of
the root mean square (RMS) deviation of the ray final
coordinates from their user specified goals. See Chapter 12, The
Run Menu: InOut.

Options::Layout offers a very complete way to specialize the
Layout artwork to best meet your needs. See Chapter 13, The
Run Menu: Layout.

Options::AutoAdjust lets you set the parameter step size,
maximum number of iterations, and tolerance for the auto
adjustment process. Full details are shown in Chapter 20, The
Run Menu: AutoAdjust.

Options:Plot 2D is the setup panel for the Plot 2D display,
described in Chapter 14, The Run Menu: Plot2D.

Options:MultiPlot gives you access to the multiple plot
features of BEAM FOUR. See Chapter 15, The Run Menu:
MultiPlot.

Options:Map presents you with the setup panel for the Map
display, described in Chapter 16.

Options::Plot 3D is the setup panel for the Plot 3D display, described in Chapter 17, The
Run Menu: Plot3D.

Options::Histo 1D is the setup panel for the Histo1D display described in Chapter 18,
Run Menu: Histo1D and MTF. Histo1D is also the gateway to the MTF function. If there
is a Histo1D window currently on-screen and selected, File::WriteHisto writes its
histogram as a text file of ASCII numbers in your current directory.

Fig. 24-1: Options.

 119

Options::Histo 2D is the setup panel for the Histo2D display described in Chapter 19,
Run Menu: Histo2D. Like Histo1D, if a histogram is currently available, you can save its
numerical contents as a text file using File::WriteHisto.

Options::Random lets you set the ray refresh rate and the random ray stopping point,
either in terms of the number of ray starts or the number of ray finishes. The capabilities
are described in Chapter 22, Run Menu: Random Rays.

Options::CAD is the setup panel for choosing the CAD output artwork format. The
CAD and graphics output formats supported are briefly described in Chapter 23.

Options::Startup Files lets you specify those files that you may want to load
automatically at startup: .OPT, .RAY, and/or .MED. You may choose your starting
directory for manually loading with File::Open.

Options::Factory lets you overwrite your
accumulated Options with the initial factory
settings. You might want to do this if you
want to return your BEAM FOUR to its
configuration as shipped, for example to
diagnose some unexpected behavior.

Options::Editors allows some customization
of the editors that are built into BEAM FOUR.
These include choosing the information to
show in the title bar of each editor, choosing
font size, and display pixel smoothing. See
Chapter 8 "Editors."

Options::Graphics provides a way to
customize your graphics output, including font
size, initial window size, and pixel smoothing.
Two fonts are used: a basic Graphic font that
is employed by each graphic screen in
labelling axes and dimensions, and a separate
font that you use when annotating a graphic
after having set its pan and zoom. Indeed you

can have several annotation fonts successively by changing it partway through your
annotation. Options::Graphics is introduced in the concluding section of Chapter 13
“The Run Menu: Layout.”

Options::Default Rays lets you set your preferred ray start default directions, including
the random ray generators. See Chapter 10 "Rays and Ray Tables" for examples.

Fig 24-2: The Startup Files dialog.

 120

Options::Ray Generators gives you access to deterministic ray generators that can
supply ray start coordinate groups to your .RAY tables. These are: 1D ribbon or fan
beams, 2D rectangular ray groups, or 2D circular nested groups of rays, either uniform or
Gaussian. See Chapter 10 "Rays and Ray Tables" for examples. These ray generators
are accurate but you must allow enough digits in their output fields to achieve high
accuracy.

Options::Look and Feel offers a collection of appearance options and behavior options
appropriate to your operating system. The L&Fs "Metal" and "CDE/Motif" are built into
Java. Others are gathered from your computer's operating system. On MS-Windows
platforms you will likely see “Windows” and “Windows Classic” offered. Newer
Macintosh computers have the Mac OS X look-and-feel offered.

 121

Chapter 25: The Help Menu

The Help menu has three entries:

Show Table Error is enabled when a table is loaded that contains a data entry that fails
to parse correctly as a valid input field. This is usually due to a typographical error in the
table. Select this menu item if you receive an error message such as "optics syntax
error" or the like. This menu item will pop the offending table to the front, and will
place the blinking caret at the beginning of the offending data field. If there are no syntax
errors in the tables you have loaded, this menu item is grayed out.

Special Keys brings up a reminder dialog about the special key assignments for specific
editor functions that help to manage your BEAM FOUR data tables. These are:

• F7 or Ctrl/Cmd-Left: narrow the field
• F8 or Ctrl/Cmd-Right: widen the field
• F9 or Alt-Right: split the field at the caret
• F10 or Alt-Down: copy field contents down the page.
• Ctrl/Cmd Z: undo and redo the most recent table change.

This window also reminds you how to insert lines into your tables while preserving your
layout of data fields: copy one or more existing lines to the clipboard, then paste them
back into your table.

This same window shows reminders for graphics, using a two button one-wheel mouse:

• Left button Drag: retrace & pan
• Left button Click: set caret for annotation and zoom center
• Wheel or F7/F8: retrace and zoom in/out
• Shift + Wheel or F5/F6: zoom the vertical magnification only
• Right button Drag: twirl vertically and/or horizontally.

Mac users: the Mac OS does not allow applications to access the function keys F7, F8 etc
so you will need to use the Cmd and Alt key alternatives shown here.

Zoom In vs Zoom Out: the mouse wheel zooms graphics in and out. You may choose to
have the wheel pull action cause a zoom in, or have a wheel push action zoom in. Go to
Options::Graphics and select the wheel action polarity you prefer.

Run::Demo is a simple graphics demo for the mouse controls. A colored cube is
displayed within a graphics window and it can be panned, zoomed, and twirled.

About gives the release and copyright information for the product and your host Java.

 122

Chapter 26: Spreadsheets
A spreadsheet like Microsoft Excel© is an easy way to generate and analyze numerical
data. It can be used to generate optics tables, ray tables, and media tables that BEAM
FOUR can read, and conversely they can be used to manipulate and process the
numerical output that is produced by BEAM FOUR. In this chapter we describe how to
communicate from and to Excel, and show a few useful spreadsheet tasks.

Communication: There are basically two routes: clipboard and file. Clipboard transfer is
quicker; file transfer gives you a more permanent record of the data transferred.

Clipboard Transfer of Spreadsheet Data Records into BEAM FOUR: In your
spreadsheet, set up columns of data that mimic the format that you want your BEAM
FOUR table to have. You have the full power of your spreadsheet at your disposal to
create this information. The block of cells to be transferred can lie anywhere in your
worksheet, but make sure that the sequence of fields generated corresponds to the entire
sequence of fields that you will want in your BEAM FOUR data table starting in its
leftmost field. Mark this block with your mouse as a rectangular block of cells and copy
it to the clipboard using Ctrl/Cmd-C or Edit::Copy. Then, in BEAM FOUR, construct
or adopt a table of the appropriate gender (.OPT, .RAY, or .MED) with your field widths
set sufficiently wide and your field headers sequenced appropriately. Click your mouse in
the table to put the blinking caret at column 1 in the topmost data record that is to receive
your transfer block. This may lie anywhere below your ruler line. Hit Ctrl/Cmd-V or
Edit::Paste to transfer the information from your clipboard into BEAM FOUR.

Clipboard Transfer of Entire Table into BEAM FOUR: Set up a worksheet to mimic
your entire table layout. In cell A1, put the number of data entries that your table will
contain, and in B1 put any other title block information appropriate to your table. In
cells A2, B2, C2... install your data field headers. Your ruler cells A3, B3, ... can be left
empty but they look nicer if each has a ruler segment in it, which you can enter by typing
an apostrophe and a few hyphens ('------) into each cell. Cells A4, B4, etc are where
you place your computed numerical data. Save your completed worksheet in the usual
way, and then mark the table zone with your mouse and copy it to the clipboard. Then,
in your BEAM FOUR destination table, put your blinking caret into the left end of the
top line (the title line) and paste the clipboard contents with Ctrl/Cmd-V or Edit::Paste.
When you transfer an entire table like this, BEAM FOUR uses the generic editor field
width (set in Options:Editors:Default Fieldwidth), typically 10 characters per field. If
you intend to display fields with more digits than this, you will want to boost the
receiving field width accordingly before doing the transfer.

File Transfer of Entire Table into BEAM FOUR: This process goes just like the
clipboard transfer, except when you have generated and saved your worksheet, save it
again as a tab-delimited .txt file or as a comma-delimited .csv file. (BEAM FOUR reads
and properly interprets either type of file). You may rename the file with an extension

 123

.OPT, .RAY, or .MED extension to help you remember what it represents, or you can
leave it with its native extension and read it into BEAM using File::Open::All_Files.

Clipboard Data Transfer into Excel®: This process is eased by the fact that Excel can
by default read and properly parse clipboard text that is tab-delimited. Set up BEAM
FOUR to generate tab-delimited clipboard output by going to Options:Editors and
choosing Clipboard Output = tabs. Once set that way, blocks of records you mark and
copy to the clipboard will be sent there with their colons or other tag characters converted
to tabs, so that successive fields will be automatically distributed into successive
spreadsheet cells when pasted into place within Excel.

File Transfer into Excel®: If your BEAM FOUR file uses colons as field delimiters,
without other tag characters, then Excel can be set to identify and use those colons to
identify the successive cell contents. In Excel, choose File:Open and select Files of Type
= All Files (*.*), then select your .OPT, .RAY, or .MED file. A "text import wizard" will
guide you through three steps: at step 1 choose Original Data Type = Delimited; at step
2 check the "Other" box and enter Other [:] for colon recognition; and at step 3 choose
Column Data Format = General. Click [OK] and the file will transfer.

Spreadsheet Tasks: A spreadsheet is a useful adjunct in working out optical system
setups (for example, from a first order paraxial description), or for generating ray starts
according to a computational scheme of your own, or for interpolating refractive index
data to wavelengths you need. We give a few examples here.

Parabolic interpolation: One kind of spreadsheet calculation is to interpolate a function
between given data points. Usually, refraction data are tabulated at specific wavelengths
defined by emission line lamps, whereas the optical designer may want refraction indices
at some other wavelengths. A parabolic (quadratic) curve can be useful for this
interpolation provided that the data are smoothly varying, as they will be over a limited
wavelength range. Three data points determine the quadratic function. Here we
abbreviate the three wavelengths X1, X2, and X3, and denote the refractive index values
there as N1, N2, and N3. The interpolation function giving N as a function of any value
of X lying in the interval spanned by X1..X3 is

To set up a worksheet to deliver this interpolation in a format that resembles a .MED file,
put the number of glasses into cell A1 and the filename into cell B1. On your second row,
put the three known wavelengths into cells B2, C2, and D2. Then put all the other
wavelengths where interpolations are needed into cells E2, F2, etc. In the third row, put
all blanks --- the colon line delimiters will appear when the tab-delimited file is loaded.
In the fourth row, enter your glass name in cell A4, and enter the known refractive
indices into cells B4, C4, and D4. Then, into cell E4, enter the interpolation formula.…

 124

 +$B4*(E$2-C2)*(E$2-$D$2)/(($B$2-$C$2)*($B$2-$D$2))
 +$C4*(E$2-B2)*(E$2-$D$2)/(($C$2-$B$2)*($C$2-$D$2))
 +$D4*(E$2-B2)*(E$2-$C$2)/(($D$2-$B$2)*($D$2-$C$2))

...and then copy this one-cell formula into all the other column and row cells where
interpolation is wanted. The spreadsheet takes care of the cell renumbering during the
copying operation. To check your typing, put some interpolation wavelengths into your
spreadsheet whose value is the same as a given wavelengths, and verify that the answers
agree with the given refraction values. An example is shown below.

6 media CALC.MED
 0.4861 0.5893 0.6563 0.5000 0.5500 0.6000

K7 1.5170 1.5111 1.5085 1.5161 1.5131 1.5106

BK7 1.5224 1.5167 1.5143 1.5215 1.5186 1.5162
SK2 1.6149 1.6073 1.6041 1.6137 1.6098 1.6067
LF7 1.5875 1.5749 1.5709 1.5853 1.5788 1.5740
F4 1.6285 1.6164 1.6116 1.6265 1.6203 1.6155

SF2 1.6612 1.6475 1.6421 1.6590 1.6519 1.6465

Fig 26-1 Top: cells A1 through G9 of an Excel® spreadsheet prepared for six glasses.
Bottom: the same file saved as type .TXT and renamed .MED, then dropped into the
BEAM FOUR workspace. The tab characters in the text file are interpreted as colons on
the ruler line and in the refraction data below. The rightmost colon on the ruler line
serves to terminate the final field and should be supplied manually if it gets truncated.

Sellmeier interpolation: For refraction interpolation, the Sellmeier formula is
commonly used throughout the optical and near infrared wavelength range. This formula
has six coefficients B1, B2, B3, C1, C2, and C3, with the wavelength λ in microns:

N(λ) = 1+ B1⋅λ 2

λ 2 −C1
+
B2 ⋅λ 2

λ 2 −C2
+
B3⋅λ 2

λ 2 −C3

Sellmeier coefficient values are published by optical glass manufacturers for their most
popular glass formulations. A spreadsheet with this formula can yield accurate refractive
index values over a wide wavelength range.

 125

Here’s how to set up a spreadsheet using a glass manufacturer’s B and C values to carry
out Sellmeier interpolation. First, arrange the spreadsheet to show the glasses you are
interested in, with columns for B1, B2, B3, C1, C2, and C3. Here are the first few Schott
glasses with the Sellmeier coefficients highlighted in blue:

Fig 26-2: Screen snapshot of an Excel ® spreadsheet for doing Sellmeier interpolation.

We’ve used spreadsheet columns A and B to hold the Schott glass names and their nd
values (their refractive indices at 0.5875618 microns). We arranged columns C through
H hold the values of B1 through C3. In column I, we’ve started the interpolation work
with a test d wavelength of 0.5875618 microns in cell I2, to allow us to compare with the
given nd values in column B. Put the Sellmeier formula into cell I3…

+sqrt(1+I$2*I$2*$C3/(I$2*I$2-$F3)+I$2*I$2*$D3/(I$2*I$2-$G3)+I$2*I$2*$E3/(I$2*I$2-$H3))

This formula can be entered once, then copied down the page to interpolate all the glasses
at this wavelength. Verify its agreement with column B. Then you can put a succession
of other wavelengths into cells J2, K2, L2 etc, and copy the column I interpolation
formulas over into J, K, L, etc. Hide columns C-H to make the results tidy. Finally, copy
and paste the spreadsheet into a new .MED editor window and save it as a .MED file.

Fig 26-3 Top: spreadsheet interpolation results; bottom: MED file contents.

 126

Format conversion: A spreadsheet is a convenient way to convert an optical system
description from one tool’s format to another. The changes that might be needed are unit
conversions (mm, inches, meters), choice of showing refraction in the medium
approaching vs. departing a surface, choice of using curvatures vs. radii, and choice of
using absolute surface locations vs. spacing between surfaces. Here we show an example
of a Ritchey-Chretien telescope with a two-lens corrector that demonstrates all four of
these conversions.

The top segment of the spreadsheet is written in B4 style: index is the refractive index in
the medium approaching each surface, curvature has its usual meaning, and element
locations are given in absolute meters. The middle segment converts this to an
alternative format with units in mm, refraction departing each surface, and locations are
determined from the thickness preceding each surface. The bottom segment converts
back. Note that polynomial coefficients can have large conversion factors: going from
meters to mm in A4 needs a factor of 1E-9.

 127

Chapter 27: Sample Session
Here is a short session that illustrates a few of the features of BEAM FOUR. The files to
be used will be the simple biconvex lens data stored in LENS.OPT (an optics file) and a
ray file LENS.RAY. These files are supplied in the distribution package. We assume
that you have installed the software as described in Chapter 4.

1. Run the BEAM FOUR program by double clicking on its icon.

2. At the top menu, select File::OpenOptics by clicking your mouse on the menu item
"File" and pulling it down to "Open Optics." A dialog box opens showing the current set
of .OPT optics files. Double-click the file LENS.OPT. It will open in an edit window.
This file shows the list of optical surfaces in the sequence that light will visit them.

3. At the top menu, select File::OpenRay. Choose LENS.RAY. This file too will open,
appearing in an edit window that shows the list of rays that are to be traced.

4. Now, most of the "Run" menu items become active, that is no longer grayed out.
Select Run::InOut to run a ray trace and have the ray table's output fields fill in
numerically with the results. If the results are useful, you can return to File::SaveTable
to save the results of this calculation.

5. Select Run::Layout. A graphics window will open on the screen and a layout
diagram of your lens and its rays will appear. You may adjust the zoom, pan, and
orientation of this diagram using the mouse wheel, left mouse button drag, and right
mouse button drag controls.

6. Turn on the random ray generator and watch your graphic fill in with random rays.
Select Run::Random, which is available whenever a graphic window is topmost. Its job
is to illuminate an optic with randomly generated rays that span the position and angle
range of rays already defined within your ray table. An accompanying dialog shows the
progress of the random ray production, listing the number of ray starts, the number of
rays that completed their trace, and the ratio of successes to tries.

7. Now let's look at a spot diagram. First, construct a group of rays that fill the pupil of
this lens: choose Options::RayGenerators::2D Circular. Select Coordinate Pair = (U,
V). Select OuterCircleRadius = 0.1. Select 2 circles = 19 rays and click OK. This will
write a group of 19 ray starts into your ray table, ready to run. Then ch:Plot2D and
produce a spot diagram.

 128

Chapter 28: Sample Files

Optics and Ray Files: A number of sample files are provided with each shipment of
BEAM FOUR. Many of these illustrate one or more features of the software and are the
examples shown in this Guide. Some of these could be useful starting points for your
own work.

360.OPT and 360.RAY
ANGLES.OPT
ACHRO.OPT and ACHRO.RAY
BICONIC.OPT and BICONIC.RAY
CASS.OPT and CASS.RAY
CYLINDER.OPT and CYLINDER.RAY
CZERNY.OPT and CZERNY.RAY
DIHEDRAL.OPT and DIHEDRAL.RAY
DISK.OPT and DISK.RAY
DROPLET.OPT and DROPLET.RAY
ELLIPSE.OPT and ELLIPSE.RAY
ERFLE.OPT and ERFLE.RAY
FISHEYE.OPT and FISHEYE.RAY
FZP.OPT and FZP.RAY
GRAZE.OPT and GRAZE.RAY
HOE.OPT and HOE.RAY
HUBBLE.OPT and HUBBLE.RAY
HYPER.OPT and HYPER.RAY
LENS.OPT and LENS.RAY
NEWTON.OPT and NEWTON.RAY
PRISM.OPT and PRISM.RAY
ROWLAND.OPT and ROWLAND.RAY
SPIDER.OPT and SPIDER.RAY
TMA.OPT and TMA.RAY
TORIC.OPT and TORIC.RAY
XYZFIT.OPT and XYZFIT.RAY

Media: Four media tables are furnished for use at visible, NIR, and NUV wavelengths:

GLASS.MED with 8 glasses and 3 plastic materials;
SCHOTT.MED with 105 glasses (see www.us.schott.com);
OHARA.MED with 120 glasses (see www.oharacorp.com);
HOYA.MED with 94 glasses (see www.hoyaoptics.com).

You of course may augment these tables, or build your own, based on optical media that
you use and emphasizing the wavelength regions of interest in your work.

 129

Null Test Files: Testing the accuracy and robustness of your software is important, and it
is valuable to run a series of test calculations whose answers are known in advance.
Because accuracy can depend significantly on surface type and angle of incidence (near
normal vs. grazing incidence), test cases should explore these variables. We supply a few
test files called "null tests" for which each ray's final coordinate is zero if the calculation
is performed properly. These files “xxxNULL” are described below and come with each
distribution.

CASSNULL.OPT and CASSNULL.RAY
-- This is a classical Cassegrain telescope comprising a concave parabolic (conic)

primary mirror and a convex hyperbolic secondary mirror, ideally aligned and focussed.
In parallel incoming light a perfect focus should be formed.

GRAZE1NULL.OPT and GRAZE1NULL.RAY
-- A grazing incidence telescope with both conjugates at infinity is formed by two

confocal parabolic reflectors at grazing incidence. The paraboloids are implemented
using conic sections having asphericity = -1. For incoming rays parallel to the axis,
outgoing rays should also be parallel to the axis.

GRAZE2NULL.OPT and GRAZE2NULL.RAY
-- Similar to GRAZE1NULL except that this test sets up a finite image conjugate which

necessitates a hyperbolic secondary mirror implemented as a conic, and for variety we
implement the primary mirror using a polynomial.

GREGNULL.OPT and GREGNULL.RAY
 -- This is a classical Gregorian telescope comprising a concave parabolic (conic)
primary mirror and a concave ellipsoidal secondary mirror, ideally aligned and focussed.
In parallel incoming light a perfect focus should be formed.

HYPER1NULL.OPT and HYPER1.RAY
-- This is a plano-convex lens with a hyperbolic surface profile chosen with regard to

the refractive index of the lens material to form an ideal point image for incoming rays
that are parallel to the lens axis. To satisfy this condition, the hyperboloid must point
toward the finite conjugate and the asphericity must equal the negative of the square of
the refractive index.

HYPER2NULL.OPT and HYPER2.RAY
-- This file represents a biconvex lens with both surfaces having hyperbolic profiles

chosen with regard to the refractive index of the lens material. An ideal focus should be
formed, given an ideal point source of illumination.

PARABNULL.OPT and PARABNULL.RAY
-- Here a concave parabolic (conic) reflector provides a perfect image point focus for

illuminating rays that are parallel to the paraboloid axis.

 130

POLY1NULL.OPT and POLY1NULL.RAY
-- This file explores a simple parabolic mirror implemented -- not as the usual conic

section -- but rather as a polynomial surface of type A2. Polynomials are more general
than conic sections of revolution and employ different internal mathematical components,
and therefore need their own tests. Parallel incoming rays should form an ideal focus.

POLY2NULL.OPT and POLY2NULL.RAY
-- A complicated way to make a concave spherical reflector is to construct a concave

surface out of polynomial terms to 14th degree, as is done here. Because this is finite, the
accuracy of the approximation is limited. For an extreme edge ray in an f/1 system, the
expected transverse aberration should be a computable fraction of the focal length.

SPHERENULL.OPT and SPHERENULL.RAY
- An ideal concave sphere should return all origin rays to its origin. Here the sphere is

implemented the easy way, as a conic section of revolution with asphericity = 0.

TORIC1NULL.OPT and TORIC1NULL.RAY
-- A concave spherical mirror is implemented using an equal radius toric surface. Light

originates at the origin of coordinates and should ideally return there upon being reflected
by this special toric, exactly as for a sphere. The difference here is the internal
mathematical components (interceptor, solver, and gradient computation) have a higher
level of generality than the more elementary conic section solvers, and are therefore
tested separately. This file makes a sphere the hard way.

TORIC2NULL.OPT and TORIC2NULL.RAY
-- Here a concave parabolic (conic type) toroidal reflector is illuminated by "wheel

spoke" rays that radiate in a plane offset from, but parallel to, the principal axis. The
parabolic conic surface should return all rays to the origin.

TORIC3NULL.OPT and TORIC3NULL.RAY
 -- This is a concave toroidal reflector similar to TORIC2NULL except that its

parabolic section is a special polynomial case, A2, rather than a special conic case with
asphericity = -1.

ZERNNULL.OPT and ZERNNULL.RAY
 -- a Newtonian telescope implemented using a Zernike surface of type Zern3 as its
parabolic primary mirror. Zern3 is actually the sum of a paraboloid and a negative piston
(see Appendix 3). The Newtonian telescope's tilted flat mirror is implemented by a
Zernike mirror surface of type Zern1, pure tilt. This test is unusual because Zernike
polynomials are commonly employed only as small deviations from nominally ideal
optical surfaces. An ideal focus should appear to one side of the principal telescope axis.

 131

Chapter 29: Viewing Stereoscopic Displays

3-D stereo display option is available for Layout, Plot3D and Histo2D functions. The
stereo effect is produced by generating two views of a 3D line drawing. One view uses
red on a black background, and the other uses blue on a black background. The two
views are slightly separated in left-right viewing angle. Viewed through red/blue
eyeglasses, the two scenes appear to merge into one 3D scene.

Parallax The parameter that controls the apparent angular separation of the two images
is parallax, and can be set numerically in the Options dialog for each graphic. Parallax
values that work best are those that provide just a few pixels separation between the
extremes of the red and blue screen images. Start with a value of 5, and adjust zoom &
twirl to determine the best parallax setting for your graphic. Traditionally the red filter is
for the left eye, blue on the right; if your viewer is reversed, use a negative sign for your
preferred parallax.

Viewers For best effect it is important that the red viewing filter have very little
transmission of blue light (this is nearly always true) and the blue filter have very little
transmission of red light (this can be a problem). The common red/blue lens combination
works well; red/cyan suffers from added red leakage through the cyan filter, and
red/green is poorer still at rejecting red light through its green filter.

The best viewers we’ve found are the Berezin #543 clip-ons and the Berezin 542B plastic
frame eyeglasses. Inexpensive cardboard frame glasses with colored cellophane filters
can also work. Try a web search for “3D glasses” to see what is available. Some vendors
offer one pair of cardboard/cellophane glasses for just the price of postage. Your local
video game store probably sells or gives away viewers too. To check the compatibility of
your display screen colors and your viewing glasses, set up a stereo B4JE display, then
close one eye, then the other. Each view should be single, not double.

Darkness Another factor that improves the 3D effect is your local lighting condition.
Dark ambient lighting and a huge display in full-screen mode both help the 3D illusion.

Density When many rays bunch together, the red and blue artwork elements merge into a
featureless magenta patch from which no 3D illusion is possible. 3D viewing works best
when the line density on the screen is low enough that individual features are distinct.

Speed Finally note that 3D images take more than twice the computer time to render, so
the machine speed is a stronger consideration than with the usual 2D screen images.

 132

Chapter 30: License and Warranty

SINGLE USER LICENSE AGREEMENT: Stellar Software and its suppliers grant to
Customer a nonexclusive and nontransferable license to use the Software and its
Documentation. Customer may make any number of archival copies of the Software and
Documentation for his/her own use and for backup purposes. The program may be used
on only one computer or terminal at a time. Corporate owners may assign the software to
any one employee, during which assignment the software may not be used by any other
employee under this single user license.

BEAM FOUR is a proprietary product of Stellar Software. It is protected by international
copyright law. Except as expressly authorized above, the customer shall not: modify the
software; reverse compile or reverse assemble any portion of the software; rent, lease,
distribute, sell, or create derivative works of the software or documentation, except by
prior written agreement with Stellar Software. Rights of sale and distribution are retained
by Stellar Software.

STELLAR SOFTWARE offers this software and documentation on an "as is" basis. A
defective disk will be replaced by Stellar Software within 90 days of purchase, when
accompanied by a proof of purchase. No other warranty of any kind, expressed or
implied, is offered. In particular, Stellar Software does not warrant that the information
distributed in the software or documentation will necessarily be suited to the specific
needs of the purchaser. Stellar Software does not assume liability for incidental or
consequential damages arising from the use of the product, even if Stellar Software has
been advised of the possibility of said damages.

 133

Appendix 1: Conic Sections

Conic sections are mathematical curves (parabolas, hyperbolas, circles etc.) that satisfy
quadratic algebraic expressions. Geometrically they are equivalent to the intersection of
a cone with a plane, hence the name. When a conic section is rotated about an axis, it
sweeps out a surface in three dimensions (paraboloid, hyperboloid, sphere or ellipsoid).
Surfaces of this type are very useful in optics. The parameters that represent conic
sections depend on the coordinate system chosen. The table below can be used to convert
a conic section description in one coordinate system to another. BEAM FOUR, in
common with the optics industry, uses the vertex-origin Cartesian system.

 Center-origin

Cartesian Coords
Vertex-origin

Cartesian Coords
Focus-origin
Polar Coords

Equation:

Ax2 +Bz2 =1 z = Cx2

1+ 1− SC2x2
 r = a(1− e2)

1+ e ⋅cosθ

Semimajor z axis: 1/ B 1 CS a
Semiminor x axis: 1/ A 1/ (C S) a 1− e2
Asphericity Asph: (B/A) - 1 S - 1 −e2
Shape S: B/A Asph+1 1− e2
Eccentricity e: 1−B / A 1− S e
Curvature C = 1/radius ±A / B C 1/ a(1− e2)
Locations of foci: z = ± 1/ B−1/ A z =1 C(1± 1− S) r = 0, r = 2ae
Distance between foci: 2 A−B AB 2 1− S CS 2ae
Oblate ellipsoid: B>A>0 S>1, Asph>0 fails
Sphere: B=A>0 S=1, Asph=0 e=0
Prolate ellipsoid: A>B>0 0<S<1, -1<Asph<0 0<e<1
Paraboloid: fails S=0, Asph= -1 e=1
Hyperboloid: A<0<B S<0, Asph< -1 e>1

Beware of the term "conic constant" and the symbols K, k and κ. These descriptors are
not well standardized. Some authors (e.g. Fischer & Tadic-Galeb) use them to mean
asphericity (i.e.departure from a sphere). Others (e.g. Spencer & Murty; Wetherell &
Rimmer) use κ to describe departure from a paraboloid. W.J.Smith (p.445) uses “p” for
departure from a paraboloid. In BEAM FOUR, we use the descriptor "Asphericity"
(abbreviated "Asph") to indicate departure from a sphere. We use "Shape" (abbreviated
"S") to indicate departure from a paraboloid, so that S = Asph+1. Use either Shape or
Asphericity, but not both, in your optics tables.

 134

Ray Intercepts with Conic Sections: Because the conic sections of revolution are based
on quadratic functions, there can be zero, one, or two intercepts for each ray. These
possibilities are processed as follows:

• No real roots: this ray segment is declared to be a “mis.”
• 1 or 2 roots: tested for primary hemisurface, i.e. the hemisurface whose vertex lies

at z=0. If no survivors, this ray segment is also declared to be a “mis.”
• 1 or 2 survivors: tested for positive ray length: rays cannot propagate backwards.

If there are no survivors at this step, the ray segment is declared to be a “bak.”
• 1 or 2 survivors: tested for intercept inner diameter. If no survivors: “dia.”
• 1 or 2 survivors: tested for intercept outer Diameter. If no survivors: “Dia.”
• 1 survivor: it is declared to be “OK.” The trace proceeds.
• 2 survivors: the one with the shorter ray path is chosen by default. A tag character

on the “mirror” field modifies this default. Use “>” for the longer path; or use
“<” to get the root that lies closer to the vertex.

Fig A-1 Illustrating a pair of confocal paraboloids in GRAZE.OPT. The intercept desired
at the secondary mirror is the one with the shorter ray length, and this default intercept is
permitted by the secondary Diameter. Reduce that to 0.2 and you will see that only the
longer ray path survives. Those rays can be enabled if you move the final Zvx to 0.0 or
thereabouts to let these rays complete their journeys.

 135

Appendix 2: Rotation Sequences

The orientation of an object in three dimensions can be described in a variety of ways.
One such description as follows: take an arbitrary point P that is not the origin, and write
its coordinates (x,y,z) in a frame of reference fixed in the object. Also, write its
coordinates (X,Y,Z) in a lab frame of coordinates having the same center. The matrix M
that converts (x,y,z) into (X,Y,Z) is uniquely defined by the orientation of the object's
coordinate frame. Explicitly:

X
Y
Z

=
M11 M12 M13
M21 M22 M23
M31 M32 M33

•
x
y
z

This description is a set of nine numbers, namely the matrix elements Mij. Each matrix
element has a numerical value between -1 and +1. Each represents the projection or dot
product of a unit local coordinate vector (x, or y, or z) onto a unit lab coordinate vector.
They are not independent: the sums of the squares along any column or row is exactly 1.0
because the length of the (x,y,z) vector and the (X,Y,Z) vector have to come out equal for
any object vector. A matrix that satisfies these six constraints is said to be unitary. Nine
numbers and six constraints mean that there are just three degrees of freedom for the
three dimensional orientation.

Orientations can also be described using angles. For any rotation, there exists some
direction in space (two parameters) and one angle around that axis that gives the rotation.
In Cartesian coordinates it is usually more convenient to break this one eigenaxis rotation
into three separate consecutive rotations about the original or partly rotated axes.

How many such descriptions are there? The first motion can be taken about the lab X,
Y, or Z axes -- three possibilities. Whichever is chosen, the second rotation cannot be
around that axis again, but now there are two new axes to choose from, plus two unused
of the original three axes. If the second angle is one of the original three, it creates three
new axes for a total of eight, seven of which are possible third axes, giving 42 possible
descriptions. If the second angle is one of the two new axes produced by the first angle,
it creates two new axes for a total of seven, six of which are possible third angle axes,
giving 36 more descriptions. In all there are 78 descriptions.

THE (X, y', z") ROTATION DESCRIPTION

In BEAM products, and in much of the optics industry, we use the rotation-sequence
described by successive rotations about the X, y', and z" axes. This is just one way of
doing business, but it has the advantage that each coordinate appears once so that if you
have a simple motion about just one of X, Y, or Z, there is a one-angle description of it,
and it is about the obvious axis. Another advantage of (X,y',z") over say (X,Y,Z) is that

 136

this is the way that actual mechanical goniometers work: each goniometer cradle carries
the base of the next goniometer, so that the first motion is about a fixed lab coordinate
direction -- the second motion is about an axis that depends on the first motion, and the
third motion axis depends on both the preceding motions. In all, 18 of the rotation
sequences are of the form (A, B', C") that can be created with actual goniometers. Of
these, (X, y', z") is the easiest to remember.

Define these three angles in a positive right-handed sense:

 Tilt t -- about lab +X axis
 Pitch p -- about tilted +y axis
 Roll r -- about tilted and pitched +z axis.

Abbreviate: ct = cos(t)
 st = sin(t)
 cp = cos(p)
 sp = sin(p)
 cr = cos(r)
 sr = sin(r)

(Roll is needed for the general case but is not significant for axisymmetric surfaces.)

Then, any vector (x, y, z) seen in the frame of the rotated coordinates can be converted to
its lab frame representation using the linear unitary matrix operator M:

X
Y
Z

=

cp ⋅cr −sr ⋅cp sp
st ⋅ sp ⋅cr + ct ⋅ sr ct ⋅cr − sr ⋅ st ⋅ sp −cp ⋅ st
−sp ⋅ct ⋅cr + st ⋅ sr sp ⋅ sr ⋅ct + st ⋅cr ct ⋅cp

•
x
y
z

For the case of a flat surface whose orientation is defined by the tilt-pitch-roll
coordinates, its normal is the unit +z axis in its local (rotated) frame. In lab coordinates
this +z axis, and hence the normal, is just the rightmost column of the matrix M:

 X = sin(p)
 Y = -cos(p) · sin(t)
 Z = cos(p) · cos(t)

The inverse of any unitary matrix M is its transpose: its elements down the main diagonal
(upper left to lower right) are the same, but the off diagonal elements get swapped across
the main diagonal. The conversion of a lab frame vector into that vector expressed in the
rotated coordinates is done with the transpose of M, usually abbreviated MT:

 137

x
y
z

=

cp ⋅cr st ⋅ sp ⋅cr + ct ⋅ sr −sp ⋅ct ⋅cr + st ⋅ sr
−sr ⋅cp ct ⋅cr − sr ⋅ st ⋅ sp sp ⋅ sr ⋅ct + st ⋅cr
sp −cp ⋅ st ct ⋅cp

•
X
Y
Z

THE (X,Y,Z) ROTATION DESCRIPTION

Another of the many three-angle descriptions is the (X,Y,Z) sequence: the first rotation
is identical to tilt (right handed about the lab X axis), the second rotation is about the lab
Y axis even though the optic is no longer aligned with the lab frame, and the third
rotation is about the lab Z axis, ditto.

Call these angles ax, ay, and az, and abbreviate

 cx = cos(ax)
 sx = sin(ax)
 cy = cos(ay)
 sy = sin(ay)
 cz = cos(az)
 sz = sin(az)

Then, any point (x, y, z) in the frame of the rotated coordinates can be converted to its lab
frame representation by the linear operator M(Z) * M(Y) * M(X) because successive
motions in the lab frame multiply onto the left hand side (the lab side) of the building
matrix. This product is:

X
Y
Z

=

cy ⋅cz −cx ⋅ sz+ sx ⋅ sy ⋅cz cx ⋅ sy ⋅cz+ sx ⋅ sz
cy ⋅ sz cx ⋅cz+ sx ⋅ sy ⋅ sz −sx ⋅cz+ cx ⋅ sy ⋅ sz
−sy sx ⋅cy cx ⋅cy

•
x
y
z

There is a set of angles (ax, ay, az) that describes the same orientation as the set of angles
(tilt, pitch, roll). Of course the angles are different, but the orientations are the same.
This fact gives us a way to convert angles in one scheme to or from angles in another.
We set up the rotation matrix for each scheme. All nine of the matrix elements are equal
because the orientations are the same. So, solve either way for the set of angles. This
plan converts any rotation description to any other.

Here's an example connecting (ax, ay, az) to (tilt, pitch, roll). M13 is sin(pitch) in the tilt-
pitch-roll system. But M13 is also given by cos(ax) · sin(ay) · cos(az) + sin(ax) · sin(az).
These must be equal. So, we have a formula for pitch, in terms of the three given angles
ax, ay, az:

 138

pitch = arcsin cx ⋅ sy ⋅cz+ sx ⋅ sz()

Similarly, note that the ratio of the sixth matrix element to the ninth matrix element is
equal to -tan(tilt). So:

tilt = −arctan −sx ⋅cz+ cx ⋅ sy ⋅ sz
cx ⋅cy

#

$
%

&

'
(

Similarly, the ratio of the second matrix element to the first matrix element is -tan(roll):

roll = −arctan −cx ⋅ sz+ sx ⋅ sy ⋅cz
cy ⋅cz

#

$
%

&

'
(

By shopping for the simplest expression of variables you need in one matrix, and using
the equality of matrix elements, you can write down any needed conversion formula.

This works in both directions. For example let's find the angles (ax, ay, az) that
correspond to a given trio of (tilt, pitch, roll). First, ax can be obtained by noting that
tan(ax) is the ratio of the eighth to ninth matrix element:

ax = arctan sp ⋅ sr ⋅ct + st ⋅cr
ct ⋅cp

"

#
$

%

&
'

The term sin(ay) appears by itself as the seventh matrix element, so

ay = −arcsin(−sp ⋅ct ⋅cr + st ⋅ sr)

Finally, the tangent of az is the ratio of the fourth matrix element of M to its first element:

az = arctan st ⋅ sp ⋅cr + ct ⋅ sr
cp ⋅cr

"

#
$

%

&
'

THE (Y,X,Z) ROTATION DESCRIPTION

Yet another of the specifications is the (Y,X,Z) system. The transformation to convert
coordinates in this sequence is M = R(Z) * R(X) * R(Y) and it works out to:

X
Y
Z

=

cy ⋅cz− sx ⋅ sy ⋅ sz −cx ⋅ sz sy ⋅cz+ sx ⋅cy ⋅ sz
cy ⋅ sz+ sx ⋅ sy ⋅cz cx ⋅cz sy ⋅ sz− sx ⋅cy ⋅cz

−cx ⋅ sy sx cx ⋅cy
•

x
y
z

 139

Again, useful formulas going either way can be found by identifying corresponding parts
of this matrix and the (t,p,r) matrix that performs the same transformation, from rotated
to lab coordinates.

THE (Z, x', z") ROTATION DESCRIPTION

This is Euler's original set of angles and is widely used in dynamics although not much
used in optics. Adopt the angle names a = roll about Z, i = pitch about x', and p = roll
about z". Adopt the abbreviations

 ca = cos(a)
 sa = sin(a)
 ci = cos(i)
 si = sin(i)
 cp = cos(p)
 sp = sin(p)

Then the transformation M = R(Z) * R(x') * R(z") works out to:

X
Y
Z

=

ca ⋅cp− sa ⋅ci ⋅ sp −ca ⋅ sp− sa ⋅ci ⋅cp sa ⋅ si
sa ⋅cp+ ca ⋅ci ⋅ sp ca ⋅ci ⋅cp− sa ⋅ sp −ca ⋅ si

si ⋅ sp si ⋅cp ci
•

x
y
z

Yet again, useful formulas going either way can be found by identifying corresponding
parts of this matrix and the (t,p,r) matrix that performs the same transformation, from
rotated to lab coordinates.

 140

Appendix 3: Zernike Polynomials

BEAM FOUR supports the first 36 Zernike polynomials. Be careful with numbering: the
"n" and "m" numbering system is from Born & Wolf while the index and descriptors are
from J.C.Wyant's website, and from R.N.Wilson 2000, and from other sources, but is not
well standardized. The appropriate BEAM FOUR field headers are Zern0 … Zern35.
Always specify a Diameter when using Zernikes.

 Zernike Polynomials
Born & Wolf numbering: n=radial degree; m=angular frequency

Index n m Polynomial Descriptor
0 0 0 1 Piston
1 1 1 r cos(θ) x tilt, 0°
2 1 1 r sin(θ) y tilt, 90°
3 2 0 2r2 - 1 defocus
4 2 2 r2 cos (2θ) astig 3rd order, 0°
5 2 2 r2 sin(2θ) astig 3rd order, 45°
6 3 1 (3r3 -2r) cos (θ) coma 3rd order, x, 0°
7 3 1 (3r3 -2r) sin (θ) coma 3rd order, y, 90°
8 4 0 6r4 - 6r2 + 1 spherical 3rd order
9 3 3 r3 cos(3θ) trefoil 5th order, 0°

10 3 3 r3 sin (3θ) trefoil 5th order, 30°
11 4 2 (4r4 - 3r2) cos (2θ) astig 5th order, 0°
12 4 2 (4r4 - 3r2) sin (2θ) astig 5th order, 45°
13 5 1 (10r5 - 12r3 + 3r) cos (θ) coma 5th order, x, 0°
14 5 1 (10r5 - 12r3 + 3r) sin (θ) coma 5th order, y, 90°
15 6 0 20r6 - 30r4 + 12r2 - 1 spherical 5th order
16 4 4 r4 cos (4θ) tetrafoil 7th order, 0°
17 4 4 r4 sin (4θ) tetrafoil 7th order, 22.5°
18 5 3 (5r5 - 4r3) cos (3θ) trefoil 7th; 0°
19 5 3 (5r5 - 4r3) sin (3θ) trefoil 7th; 30°
20 6 2 (15r6 - 20r4 + 6r2) cos (2θ) astig 7th order; 0°
21 6 2 (15r6 - 20r4 + 6r2) sin (2θ) astig 7th order; 45°
22 7 1 (35r7 - 60r5 + 30r3 - 4r) cos (θ) coma 7th order, x, 0°
23 7 1 (35r7 - 60r5 + 30r3 - 4r) sin (θ) coma 7th order, y, 90°
24 8 0 70r8 - 140r6 + 90r4 - 20r2 + 1 spherical 7th order
25 5 5 r5 cos (5θ) pentafoil 9th order, 0°
26 5 5 r5 sin (5θ) pentafoil 9th order, 18°
27 6 4 (6r6 - 5r4) cos (4θ) tetrafoil 9th order, 0°
28 6 4 (6r6 - 5r4) sin (4θ) tetrafoil 9th order, 22.5°
29 7 3 (21r7 - 30r5 + 10r3) cos (3θ) trefoil 9th order, 0°
30 7 3 (21r7 - 30r5 + 10r3) sin (3θ) trefoil 9th order, 30°
31 8 2 (56r8 - 105r6 + 60r4 - 10r2) cos (2θ) astig 9th order, 0°
32 8 2 (56r8 - 105r6 + 60 r4 - 10r2) sin (2θ) astig 9th order, 45°
33 9 1 (126r9 - 280r7 + 210r5 - 60r3 + 5r) cos (θ) coma 9th order, x, 0°
34 9 1 (126r9 - 280r7 + 210r5 - 60r3 + 5r) sin (θ) coma 9th order, y, 90°
35 10 0 252r10 - 630r8 + 560r6 - 210r4 + 30r2 - 1 spherical 9th order

 141

Appendix 4: Diffraction Gratings

The classical diffraction grating is a surface of arbitrary curvature carrying grooves
defined by a stack of equally spaced parallel planes that intercept the surface. We use Gx
and Gy to describe the number grooves per unit distance in x or y (local surface
coordinate system), with the unit of length consistent with the unit of length in which the
ray wavelength is measured. For example, if your wavelengths are expressed in
microns, then express your groove densities in grooves per micron.

A diffraction calculation requires that the order of diffraction be specified. Order can be
specified in either of two ways. In the optics table, a column headed "order" will
determine the order of diffraction for that particular diffractor. If there is more than one
diffractor in your optic, this is the way to define it. Or, in the ray table, a column headed
"order" will specify the order of diffraction for each ray. This way, rays can be grouped
by their orders of diffraction. The ray order method works only if there is just a single
diffractor in the optics table.

If the grooves are associated with a mirror surface (any curvature, shape, etc) the
resulting grating will be a reflection grating. Its type will be "mirror" and it will be
distinguished from an ordinary grooveless mirror by having a nonzero Gx or Gy or both.
Alternatively, if the grooves are on a lens surface (any curvature, shape, etc) the resulting
grating will be a transmission grating. Its type will be "lens" and again it will be
distinguished from an ordinary lens by having a nonzero Gx or Gy or both, and a nonzero
Order. Of course any defined change in refractive index across the surface will also
modify the ray direction, as it would on a diffractive lens surface.

If the grating has grooves that are all parallel but the groove density varies smoothly
across the face of the grating, it is termed a varied line space grating. Such gratings are
commonly used to correct aberrations in spectrometers. The variation of groove density
is described by a polynomial in x if the groove density Gx is nonzero and Gy is zero:

 density = Gx + x · VLS1 + x2 · VLS2 + x3 · VLS3 + x4 · VLS4

A similar expression applies if the groove density Gy is nonzero and Gx is zero. The
polynomial coefficients VLS1 ... VLS4 are introduced into any optics table using column
headers with these names “VLS1”, etc.

The intensities of the various diffracted orders are not computed by BEAM FOUR. For
grooved surface relief gratings, the groove profile controls these intensities. For volume
phase holographic gratings, the intensities are governed by the depth of the volume
(normally a few microns), by the amplitude of the recorded refraction wave, and by the
Bragg angle. Rigorous coupled-wave analysis can be applied to simultaneously solve for
the amplitudes, phases, and polarizations of the diffracted beams.

 142

Example: A crossed Czerny-Turner spectrometer uses a collimator mirror to illuminate a
plane reflective diffraction grating, and uses a separate camera mirror to focus the
diffracted spectrum. Figure A4-1 below shows a layout of this configuration. The files
CZERNY.OPT and CZERNY.RAY are provided with this distribution.

Figure A4-1 illustrating a crossed Czerny-Turner spectrometer. Light enters from a slit
or fiber at the left, and is collimated before falling onto the plane diffraction grating. A
camera mirror at top focuses the spectrum onto a planar sensor at bottom.

 143

Example: A transmission grating is a diffraction grating on the front or back surface of a
refractive element. At both surfaces, light is refracted in the usual way, but in addition the
groove pattern on the front or back side diffracts (redirects) light additionally. Figure
A4-2 illlustrates a frontside transmission grating.

Fig A4-2: Frontside Transmission Grating

Another grating technology is the volume-phase holographic grating or VPH grating.
Here, the grating is a thin film of laser-recordable material, often dichromated gelatin,
sandwiched between two flat glass slabs that enforce its precision flatness and stability.
Figure A4-3 illustrates the BEAM FOUR setup for such an optic.

 144

Appendix 5: Holographic Optical Elements

BEAM FOUR can trace light rays diffracted from a holographic optical element (HOE).
An HOE is a transmitting or reflecting optical surface that has been exposed to a pair of
mutually coherent light sources and developed to photochemically fix their interference
pattern. An HOE differs from a classical parallel-groove diffraction grating in that the
HOE grooves can form a wide variety of curved patterns. In use, the pattern serves as a
diffracting optic that when properly designed can offer desirable focal properties or
dispersion characteristics.

The groove pattern is completely specified by specifying where in space each of its two
wavefronts originated, and what the recording wavelength was that produced the
interference pattern. Therefore BEAM FOUR has seven parameters that serve to
completely describe the HOE. These optics-table parameters are:

HOELambda: the recording wavelength. This should be expressed in the same units
that your ray table uses to describe the wavelengths of your rays in your "wave" column.
Microns is the most common choice. Since HOEs are commonly recorded with a high
power blue laser, HOELambda is usually in the range 0.2 to 0.5 microns. In your optics
table column header, this variable can be abbreviated HOEL, but spelling it out may keep
you from forgetting what it means.

HOEx1, HOEy1, HOEz1: The location in space of your first point source of coherent
recording light. These coordinates are specified in the same units that your optics table
uses, e.g. meters or mm. The coordinate frame is the local frame: 0,0,0 is at the center of
the HOE face, and the z axis is the HOE center normal. Defaults are zero for unused
coordinates. For a parallel recording beam you will specify a source point at infinity; so
use any astronomically large number. For example a beam at 45 degrees in the (x,z)
plane would have the source coordinates HOEx1=1e99, HOEz1=1e99.

HOEx2, HOEy2, HOEz2: The location in space of your second point source of
recording light, as above.

The above seven parameters and the surface geometry serve to define the HOE pattern.
To trace your rays, BEAM FOUR needs also to have you specify the order of diffraction
that you want followed, and the numerical wavelengths of your individual rays. So you
will need an ORDER column in your optics or ray table, and an @wave column in your
ray table with the numerical wavelengths of your rays.

The HOE parameters can be autoadjusted to tune up an optical design. Once you have a
feasible trace (that is the rays reach their destination surface), put a question mark into the
tagfield of each variable to be adjusted, and choose the autoadjust function from the RUN
submenu.

 145

The HOE need not be recorded on a flat surface. The other surface descriptors continue
to apply, so that you can for example employ an HOE pattern on a hyperboloid or torus.

Here is one example. A circularly symmetric ring-pattern HOE is produced by
interference between two coherent on-axis point emitters whose recording wavelength is
0.4 microns. This HOE is to act as a positive (converging) lens for light at 0.55 microns.
In the demo HOE.OPT the first surface is the HOE and the second surface is the exit side
of its refractive substrate. Incoming parallel rays are brought to a focus on the third
surface. The recording geometry is specified by the data HOEz1 and HOEz2, which give
the effective locations on the HOE's z axis at which the point sources were placed. Since
the point sources lie on the HOE z axis, the parameters HOEx1, y1, x2, and y2 are
allowed to default to zero. (In a realistic recording geometry these would be two images
of a single point source, seen through a beamsplitter). The table HOE.RAY illuminates
the optic with five parallel incoming rays at a wavelength of 0.55 microns. The HOE
design can be tuned up by autoadjusting the HOE parameters. Here, HOEz1 and HOEz2
are marked for autoadjustment to bring the 0.55 micron rays to a focus.

Figure A5-1 A simple HOE pattern recorded onto the front surface of a transparent plano
window. The two recording point sources are both on-axis to create a circularly
symmetric diffractor. The HOE acts as a highly chromatic lens, focussed here with
collimated incident light at 0.55 microns.

An HOE that is closely related to this example is the Fresnel zone plate, which is
obtained by setting HOEz1 or HOEz2, but not both, to infinity (say, 9e99).

 146

Appendix 6: Reverse Ray Tracing

Although BEAM FOUR has no built-in tool for reverse ray tracing, it is a straightforward
task to convert an optical prescription to its reverse. This is simply because BEAM
FOUR is strictly sequential, and the reverse prescription is the forward prescription with
the row sequence reversed. To produce a reversed .OPT file do these steps:

1. Rename your file XXX-rev.OPT
2. Using the table editor, copy the first surface entry to the bottom of the table.
3. Copy the next surface entry to just above the bottom of the table.
4. Repeat until each row has been copied just once.
5. Check the new sequence.
6. Delete the top group of surfaces including the original final surface.
7. Append a new final surface to the bottom of the list, located where the rays started.
8. For each pair of lens surfaces, move the refraction spec to the second surface.
9. If there are any CBin/CBout pairs, swap their names, but not their data.

You can use this .OPT file for any purpose. One purpose could be to check its validity
using the optical reciprocity principle, that each ray introduced into the system's output
with reversed direction should propagate to the original input location. Do this:

In the original (forward) trace, provide output fields for Xfinal, Yfinal, Zfinal, Ufinal,
Vfinal, and Wfinal with plenty of digits accuracy, and run that trace so that each ray
delivers its complete final state information.

Then with the original .RAY file:

1. Rename the file xxx-rev.RAY;
2. Delete the old columns X0 Y0 etc. and rename the old output column heads as inputs:
 Xfinal -> X0
 Yfinal -> Y0
 Zfinal -> Z0
 Ufinal -> U0
 Vfinal -> V0
 Wfinal -> W0
3. Change the signs of U0, V0, and W0 but not the new X0, Y0, Z0.
4. Add new fields for Xfinal and Yfinal.
5. Run a trace of your reversed optic with your reversed rays.

According to the optical reciprocity theorem, the reverse ray trace should place its final
rays on the origins of the forward rays, but with reversed directions. This provides a
check that everything has been properly reversed.

 147

Index
aberrations ... 15
accuracy .. 10
ACHRO.OPT .. 42
action headers .. 29, 30
angle, ray & surface normal 68
annotate ... 77
array .. 30, 35, 40
aspheric ... 31
asphericity ... 30, 132
AutoAdjust .. 98

troubleshooting .. 109
automatic ray generator ... 64
axicon .. 32
axisymmetric surfaces ... 17
biconic ... 30, 34, 127
bimodal surface 29, 30, 51, 52, 53, 54, 55
blind center .. 35
CAD files and formats 22, 115
caret ... 77
circular cylinder .. 33
circular torus ... 33
clipboard transfer .. 121, 122
computational speed .. 114
cone ... 32
conic constant .. 132
coordinate break .. 29, 57
coordinate system .. 17
curvature ... 31
cylinders .. 17, 33
default ray graphic color ... 61
default surface action .. 29
default surface shapes ... 7
de-installation .. 13
diameter ... 35
diffraction grating 30, 31, 60, 73, 140, 141
dihedral ... 33
direction cosines .. 19
distortion ... 107
drag-and-drop .. 13, 21, 26, 58
DXF files ... 116
ellipsoid ... 31, 53, 132
exponential notation .. 21, 71
File Menu .. 21
Fraunhofer wavelengths .. 73
Fresnel zone plate ... 144
geometry headers .. 30, 31
GLASS.MED .. 72
goals .. 68
graphic output ... 10
graphics files ... 115
groove pattern ... 143
Hartmann test .. 48
header line ... 28
help menu .. 120
hemiellipsoid ... 53
histogram ... 96, 97
holographic optical element 30, 31, 143

hyperbolic cylinder ... 33
hyperboloid ... 31, 132
image slicer ... 52
InOut ... 74
insert lines ... 23, 120
installation ... 14
intercept solution choice ... 133
international decimal format 21
irises .. 30, 39

array ... 40, 48
stacked ... 40

landscape ... 116
Layout ... 77

cross section ... 79
cutaway view ... 81
side view .. 79

least squares optimizer .. 10, 98
lens 7, 11, 26, 29, 30, 42, 70, 80, 100

array ... 40
Descartes .. 105
lenslets ... 40

lens arrays ... 30
look-and-feel ... 12, 119
media tables .. 72, 127
mirror 30, 31, 40, 44, 45, 46, 48, 80, 129, 140

array ... 40
modulation transfer function (MTF) 96
MultiPlot ... 86
negative refraction .. 29
non-axisymmetric surfaces 17
null tests .. 128
numerical format ... 21
obsolescence ... 25
off-axis optics .. 35, 36, 37, 38
Offner relay ... 46, 47
offset ... 30, 36, 47
optical path .. 19
optics tables ... 26, 127
Options::Editors .. 25
Options::RayGenerator 66, 67
order of diffraction .. 31
overwrite ... 23
pan ... 11, 120
parabolic interpolation .. 122
paraboloid ... 31, 132
parallax, stereoscopic viewing 130
PDF file ... 22
periphery headers .. 30, 34
pitch angle ... 17, 31
Plot2D ... 83, 85
Plot3D ... 93
plotter files .. 116
polychromatic refraction ... 41
polynomial .. 30, 32
portrait ... 116
PostScript .. 115
print ... 22

 148

prism ... 41
pupil stabilization .. 92
QuickPNG ... 22, 78
random rays ... 113
ray approximation ... 14
ray color .. 11, 61
ray coordinates .. 18
ray field headers .. 68
ray goals, fixed .. 68, 75, 107
ray goals, floating .. 68, 75, 107
ray notes .. 60, 69
ray pattern generator ... 64
ray segment directions .. 19
ray starts .. 9, 59, 110
ray tables ... 58
ray tracing ... 14
ray vertex .. 18
rectangular periphery .. 35
refraction ... 29
refractive lens surface ... 42
refractive relay .. 106
retroreflector ... 30, 42, 99
reverse ray tracing ... 145
Ritchey-Chretien telescope 55
roll angle ... 17, 31
rotation sequences ... 17, 134
ruler line .. 28
Run::Random .. 84
scale independent .. 16
scatter .. 30, 56
Sellmeier formula .. 123
Shack-Hartmann ... 50
shape ... 30, 32, 132

Show Table Error .. 120
simultaneous adjustment ... 104
single user ... 131
single user basis .. 6
slit 39
special keys ... 23, 120
sphere .. 31, 132
spider ... 30, 39, 127
spot diagram .. 83, 84
spreadsheets .. 121
square periphery .. 35
startup files .. 118
statistics, MultiPlot ... 89
stereo display .. 79, 130
table driven ... 5
text table editor ... 10, 23
three-line preamble ... 26
through-focus diagram .. 86, 87
tilt angle .. 17, 31
title line ... 27
torics .. 17, 32
transmission grating .. 142
troubleshooting autoadjustment 109
twirl ... 11, 120
units of wavelength ... 61
varied line space .. 140
vertex ... 17
wavefront error (WFE) 20, 69, 93, 109
wavelength .. 73
WYSIWYG ... 10, 115
Zernike polynomials 8, 30, 129, 139
zoom .. 11, 120

