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Abstract 

Clock domain crossing (CDC) issues cause significant 
amount of failures in ASIC and FPGA devices. As FPGA 
complexity and performance grows, the influence of 
CDC issues on design functionality grows even more. 
This paper outlines CDC issues and their solutions for 
FPGA designs. Various design techniques are presented 
together with real-life examples for Xilinx and Intel 
FPGA devices. More importantly, this paper summarizes 
the most important CDC guidelines for highly-reliable 
FPGA designs.  
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Introduction 
 

As the entire electronics industry continues to add more peripherals to FPGA-based systems to address 
various consumer and business requirements, the metastability effects within the FPGA devices become 
increasingly notorious. The metastability effects can result to non-deterministic and non-functional 
errors that are impossible to catch with industry RTL simulators and static timing analysis tools. The 
resulting errors are typically found in FPGA test beds or in the field which means correcting them is quite 
expensive. If metastability effects can be properly mitigated earlier in the project lifecycle, then it can 
minimize verification costs and increase reliability of FPGA-based systems.   

The following white paper explains metastability and clock domain crossing issues in hardware designs, 
outlining various design practices to make designs immune to metastability effects and functional non-
determinism introduced by clock domain crossings. 

The Metastability Effect 
 

Metastability is a phenomenon that can cause system failure in 
digital devices, including FPGAs, when a signal is transferred 
between circuitry of unrelated or asynchronous clock domains. 
Therefore, this means it happens in systems with two or more 
asynchronous clock sources. Any sequential element in a design 
requires a certain period of stability for data to be properly 
captured; due to the unrelated clocks, this condition cannot be 
guaranteed in designs with multiple asynchronous clocks. 

 

 

 

To better understand the metastability effect, there is a need to 
examine logic gates, which are the building blocks of sequential 
elements such as D flip-flops: 

 

In fact, every flip-flop represents a negative feedback system with 
two stable states, representing two binary values. Each 
combinational gate contains one or many parallel or sequential N 
and P CMOS transistors in open or closed states. In a stable state, 
gates do not consume power other than through tiny leakages of 
current, as they must always be “closed” on one side of the power 
railing. However, when a value changes, there exists a certain 
amount of time when both N and P transistors are partially opened, 
leading to an increase in leakage current. ASIC and FPGA vendors do 
their best to minimize this amount of time as well as overall leakage 
power during the data change. The voltage level on gate A should 
change quickly enough to minimize leakage current. In the case that 
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the gate voltage becomes stuck between logic values, both gates stay partially open, causing high 
current flow between power rails, device heating, and possible burnout. 

For proper operation, each sequential element has setup and hold timing requirements for data to be 
stable around an active edge transition (data capture). When these timing requirements are violated, 
the flip-flop, having negative feedback, starts bouncing at an intermediate (metastable) state. The 
bouncing time may be quite long, being comparable to, or even exceeding, the clock cycle period. 
Obviously, the leakage current and power dissipation grows significantly during this time. The 
metastability time (Tmet) is a statistical parameter, and depends mostly on technological parameters of 
the current process. 

   

 

 

                                  

The left picture presents valid timing on the flip-flop: the input data D is stable during pre-defined 
phases of the Tsetup and Thold periods around the active edge transition. The right picture presents the 
metastability effect because of an input data change close to the active edge transition. Because of the 
occurring metastability, the flip-flop output oscillates during Tmet, producing a non-deterministic binary 
value, and experiences a high drain in current leakage. 

As it is explained above, the metastability effect causes the 
occurrence of intermediate logic values at a flip-flop’s output. 
When the sum of metastability time and propagation delay 
approaches the clock period, the intermediate logic value advances 
to later flip-flop stages, spreading the effect throughout the design. 
In the worst case, this may cause the “metastability avalanche 
effect”.  Also, combinational logic gates between the flip-flops 
consume much more power while propagating intermediate logic 
values.  

If timing violations occur often, the influence of the metastability 
effect may be critical, causing non-determinism in functional 
operations and heating up certain sections to chip burnouts.  

 Let’s take a closer look at metastability propagation conditions. 
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Assuming all other inputs to the combinational logic in the receiving clkb domain are stable, we may 
write the following condition for preventing metastability propagation between register stages: 

Tck-Q + Tmet + Tdly    <     Tperiod – Tsu   

Here, the formula members are: 

 Tck-Q: clock-to-output flip-flop delay 

 Tmet: metastability time 

 Tdly: propagation delay through wires and combinational gates 

 Tperiod: clock period 

 Tsu: flip-flop setup time 

In this formula, Tdly is the only parameter controllable by the designer. 
Designers are able to minimize Tdly by removing logic gates between 
flip-flops, as well as by reducing wire delay by placing A and B flip-flops 
close to each other. 

 

Glitches and hazards have an impact on the metastability effect too. The 
following picture presents potentially glitchy logic in a sending clock 
domain. Because the receiver may capture the signal at any time, glitches 
may violate the input signal stability requirement during setup and hold 
time, causing metastability effects at the receiving flip-flop. Removing all 
combinational logic between driver and receiver flip-flops will eliminate 
any possibility of CDC-related glitches, and this is recommended practice 
for multiple-clock designs. 

In addition to glitches, it is important to reduce the transition slew of the 
signal crossing clock domains. During signal transition, an intermediate 
value is sensed by the receiving flip-flop, and there is a higher chance for a metastable occurrence if a 
signal transition takes more time than the clock transition period. 

The transition period is defined by the driver strength and node capacitance:  

Cnode = Cwire + ∑𝑪𝒊 

where:  

 Cwire: wireload capacitance 

 Ci: sum of input capacitances 

To reduce the transition slew effect on metastability, it is 
recommended to reduce cross-domain signal capacitance 
and wireload. The best design practice is to keep one-to-
one connections between driver and receiver flip-flops, without any intermediate combinational logic or 
other connections (keeping fanout to be only one).  
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Two Flip-Flop Synchronizer as a Common CDC 
Solution 
 

The main responsibility of a synchronizer is to allow sufficient time such that any metastable output can 
settle down to a stable value in the destination clock domain. The most common synchronizer used by 
designers is the two-flip-flop (2-FF) synchronizer. Usually the control signals of a design are synchronized 
by 2-FF synchronizers. 

Let’s take a look at the timing path between the Q1 and Q2 flip-flops of 
this synchronizer pair. 

Assuming:  

TckQ + Tmet + Tdly    <     Tck_period – Tsu 

The signal at the Q2 flip-flop input settles down prior to being captured 
by the rising edge of clkb. In this case, the Q2 flip-flop never 
experiences metastability issue and always captures proper binary logic 
values, passing them to other logic elements in the design. To ensure 
the absence of the metastability effect on the second flip-flop (Q2) of 
the synchronization pair, there is a need to make sure that each of the 
synchronizer flip-flops share a direct connection only (no other connections allowed) and are placed 
closer to each other. 

In the case that metastability time Tmet is not small enough to fit into the above equation, there is a 
need to build the synchronizer with three of even more flip-flop stages. 

In summary, the recommended synchronizer pair design requirements are: 

No Requirement Reason 

1 Do not place any combinational logic between sending (A) and 
receiving (Q1) flip-flops 

Reduce transition time, avoid glitches 

2 Do not connect the sending flip-flop (A) output to any other 
gates 

Reduce transition time 

3 Keep the sending flip-flop (A) closer to the receiving one (Q1) Reduce transition time 

4 Do not place any combinational logic between synchronizer flip-
flops (Q1, Q2, …) 

Reduce probability of metastability 
effect by reducing propagation delay 
between synchronizer flip-flops 

5 Do not connect synchronizer flip-flops to any other logic gates 
(except from the last one) 

Reduce probability of metastability 
effect by reducing propagation delay 
between synchronizer flip-flops 

6 Keep synchronizer flip-flops closer to each other  Reduce probability of metastability 
effect by reducing propagation delay 
between synchronizer flip-flops 
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Safe Synchronizer Implementation in FPGA 
 

Just like ASICs, FPGA devices suffer from the metastability effect and its consequences. The following 
guidelines must be considered when implementing cross-clock domain transitions in FPGA:  

1. NDFF (2 or more flip-flop stages) synchronizers may be built from non-resettable flip-flops. 

Here, we treat these flip-flops as “pipeline” registers, whether they relate to control logic or 

not. 

2. NDFF synchronizers, as well as sending flip-flops, should be preserved (not optimized) by 

synthesis tools. In some cases, synthesis tools perform inter-register optimization, moving some 

combination logic between neighboring register stages.  

3. NDFF synchronizers (as well as sending flip-flops) should be implemented from flip-flop FPGA 

resources only. No shift registers or BRAMs are allowed, as they do not provide direct-only flip-

flop to flip-flop connections:  

 

 

 

4. By placing NDFF synchronizer flip-flops in the same slice, we achieve the smallest inter-flop 

propagation delay, reducing the chance of metastability effects. 

 

Xilinx uses the ASYNC_REG attribute placed on all NDFF flip-flops. This attribute: 

 Automatically adds the “DONT_TOUCH” attribute on synchronizer flip-flops, preventing them from 

synthesis optimization and from mappings to SRL blocks. 

 Instructs placement tools to keep synchronizer flip-flops close together, preferably in one slice. 

However, there is no guarantee that all synchronizers will be implemented in slices. 

 Instructs the gate-level Xilinx ISIM simulator to avoid producing X’s in synchronizer flip-flops when 

setup/hold violations happen. Please note that other non-Xilinx simulators miss this feature, 

requiring special gate-level simulation constraints to avoid X generation in the synchronizer’s flip-

flops. 

In addition to constraint timing between NDFF synchronizer flip-flops, 
there is a need to constrain the timing between the driver flip-flop 
and NDFF synchronizer. The “set_false_path -to Q1” command 
excludes all cross-clock domain timing paths from synthesis 
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optimization and timing analysis. However, long timing paths to the synchronizer input impacts 
transition time as well, causing metastability effects to happen more often. It is preferable to reduce 
these timing paths using the “set_max_delay -datapath_only” command. The “-datapath_only” option 
removes the clock skew from slack computation, as clock skew is not applicable for constraining signals 
between asynchronous clock domains. 

The following code example shows the Xilinx-specific NDFF synchronizer implementation for a 1-bit 
control signal: 

 

 

Intel FPGA uses the Intel-specific “SYNCHRONIZER_IDENTIFICATION” 
attribute with the “FORCED IF AYNCHRONOUS” value. This attribute 
should be placed on the first NDFF flip-flop only. The attribute 
prevents synthesis optimization of first NDFF flip-flop as well as 
provides metastability optimization during placement, trying to 
place the NDFF flip-flops closer to each other. However, there is still 
a need to set the “preserve” attribute on the second NDFF flip-flop. 
As was the case with Xilinx, constraining timing paths to the NDFF input is a recommended practice.  

Please note that Intel FPGA does not provide any means to eliminate X’s generated in NDFF 
synchronizers during gate-level simulation. 

 

Some designs contain cross domain clocking paths from input design 
ports. It is not recommended for CDC paths to cross design 
boundaries. The only exception could be the designs with NDFF 
synchronizers organized in separate entities/modules. In the case that 
a NDFF synchronizer connects directly to the input port, there is a 
need to constrain the timing path from the input port to the NDFF 
using the “set_max_delay” command. However, the external-to-
module part of the timing paths may not be controllable, causing 
potential CDC issues. For IP developers, it is highly recommended to hide all CDC transitions within IP 
designs, preventing any CDC issues during IP integration in customer designs. 
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Half-Cycle Synchronizers in FPGA 

 

In half-cycle synchronizers, the second flip-flop captures data using 
an inverted clock edge:  

The purpose of inverting the clock at the second synchronizing flip-
flop is to save a half clock cycle delay during the propagation delay 
of CDC signals. Sometimes, these synchronizers are implemented 
on timing-critical paths of ASIC designs, where propagation delay 
savings within CDC paths are critical for correct design functionality. This approach, however, adds 
significant constraints on metastability time: now, metastability time plus added propagation delay must 
fit into the half period of the receiving clock:  

In addition, the clock inversion introduces extra clock uncertainty, 
constraining the metastability time even more. 

Half-cycle synchronizer should be avoided in FPGA designs 
because of the following reasons: 

 In FPGA, clock inversion cannot be done using a local 

inverter gate so close to the second flip-flop. Inversion 

must be done through centralized FPGA clocking resources, for example, through the MMCM 

clock management component in Xilinx. Because of this, extra clock tree resources are required 

for the inverted clock. The mismatches between “direct” and inverted clock tree delays are 

more than the delay though the local clock inverter. So, the increasing clock uncertainty 

constrains the length of metastability time even more. 

 In FPGA, registers belonging to different clock domains 

reside in different FPGA slices:  

Because of this, the interconnect path between synchronizer 
registers are not optimal from a CDC perspective. 
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Functional Non-Determinism of CDC Signals 

 

From a functional perspective, clock domain crossings introduce non-
determinism into design functionality due to unpredictable NDFF delays 
for signals crossing clock domains:  

For a single control signal, this may not be an issue as 1-cycle delay 
unpredictability is not important for passing signals to the new clock 
domain. 

The issue of unpredictable delay becomes critical when related signals 
(either control or data) cross clock domains through NDFF synchronizers. 
Therefore, it is dangerous to pass functionally related bit signals through 
NDFF synchronizer arrays because of potential data corruption at the 
receiving side. 

The following example demonstrates vector corruption at a clock domain 
crossing through a NDFF synchronizer array:  

Due to delay variations, the Din[1] bit arrives later than the rest of Din bits, 
causing Din vector corruption at the receiving side. 

In the above example, both bits Din[0] and Din[1] change simultaneously, 
with the Din[1] bit experiencing more delay than bit D[0]. There should be 
no corruption if only one bit in the Din vector changes at a time. In this 
case, the receiving side vector either changes to a new value or, in the 
case of extra cycle delays, stays at the previous value. Gray coding ensures 
only a 1-bit change, if it is applied on incremental counters with a counter 
limit of power two.  
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Data Synchronizers 
 

There are two basic methods for transferring data signals across clock domain boundaries. The first is 
based on enable-controlled data capture in the receiving domain. The second is based on sequential 
writing and reading of data using a dual-port FIFO. 

Control-Based Data Synchronizers 

There are different types of synchronizers using enable-controlled data capture. In each type, however, 
the enable signal is responsible to inform the receiving domain that 
data is stable and ready to be captured:  

The transmitter is responsible for keeping data stable over a time 
when the data enable signal, propagated to the receiving domain, 
stays asserted. The stability of all data bits during receiver data 
capture guarantees an absence of the metastability effect as well as 
correct data capture. 

The following table summarizes the most commonly used control-based data synchronizer types: 

 

Name Schematics Waveform / State diagram Description 

Mux-Based Data 
Synchronizer 

 

 

 

 

Sender domain is responsible 
to keep Di data stable when 
captured by the receiving 
domain (when En’ signal is 
asserted) 

Enable-Based 
Data 
Synchronizer 

 

 

 

 

Similar to the mux-based 
synchronizer, but based on 
flip-flops with built-in enable 
signals 

Handshake-
Based Data 
Synchronizer 

 

 

 

 

 

 

The task of the TX/RX FSM 
pair is to ensure two-side 
communication between 
sender and receiver to 
guarantee Di signal stability 
while the En signal is asserted 
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To achieve safe data capture, the control-based data synchronizers 
should make sender data stable not only during the period of the 
enable signal assertion, but slightly wider, considering certain data 
setup and hold times relative to the data’s stability region. This is 
important to eliminate possible data glitches during data capture. The 
handshake-based data synchronizer automatically implements these data stability margins during the 
cross-domain handshake communication. 

 

 

FIFO-Based Data Synchronizers 

 

Limited bandwidth is one of the main drawbacks of 
control-based data synchronizers. Each data transfer 
takes time, since each data transfer comes along with 
control signal intercommunication. FIFO-based data 
synchronizers allow fast data communication through 
clock domain boundaries. In FIFO-based data 
synchronizers, data is pushed into the FIFO with the 
transmitter clock and pulled out from the FIFO with 
the receiver clock. The FIFO_FULL control signal 
controls the driver write frequency, while the FIFO_EMPTY signal controls the receiver read frequency.  

In asynchronous FIFO designs, the Gray-coded read and write pointers are passed into alternate clock 
domains through NDFF synchronizers to generate full and empty status flags. It is important to make 
sure that prior to coding, a counter runs from 0 to the power-of-two boundary, as only in this case can 
we achieve a one-bit-change of the coded counter signal during counter wrap-up. 
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Data Synchronizers Implementation in FPGA 

 

One of the more well-known FPGA issues is the use of multiplexors in the output 
decoders of lookup tables:  

These multiplexors may produce glitches during certain combinations of input 
values. The basic multiplexor is built from AND and OR gates, with an inverted “sel” 
value supplied to the upper AND gate. When both multiplexor inputs stay “high” 
and that select signal changes from high to low, the glitch appears on the 
multiplexor’s output, as shown in the following picture: 

   

  

 

 

 

So, even though both multiplexer inputs remain stable and only the mux select signal changes, the 
multiplexor may experience glitches on its output. This glitch may be captured at the receiving clock 
domain, causing metastability and data value corruption. As multiplexors are used to implement a 
lookup table’s output decoder, any combinational logic in FPGA may produce glitches.  

In timing-critical high-speed FPGA designs, it is important to avoid any combinational logic located at 
either control or data clock domain crossings.  For this reason, mux-based data synchronizers should be 
avoided. The preferred data synchronizer in FPGA should be built on receiving flip-flops with built-in 
enable signals. Both Xilinx and Intel FPGA development tools support the “direct_enable” attribute set 
on these flip-flops. This attribute implements flip-flops with a built-in enable input. During the data 
synchronizer’s implementation in FPGA, it is important to mark the wire controlling the flip-flop capture 
array with the “direct_enable” attribute. Also, it is important to place data sending and data receiving 
flip-flop arrays close to each other in order to reduce cross-domain propagation delay as well as signal 
transition time. The “set_max_delay” constraint should be set on the data synchronizer’s timing paths.   

For non-timing-critical FPGA designs, designers may use (with special 
care) combinational logic on clock domains crossings. For example, 
BRAMs may be used instead of driving a flip-flop array, being 
connected directly to receiving flip-flops from another clock domain:  

To avoid glitches during data transfer, the outputs of BRAM should 
remain stable during En’ signal assertion, as well as adding sufficient 
setup and hold margins. 

 

The following code examples illustrates data synchronizers’ implementations for Xilinx and Intel FPGA 
devices, along with timing constraints: 
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FPGA Vendor Code Constraints 

Xilinx 

 

set_max_delay  

-datapath_only 
<delay>  

-from …/data_in 

-to  …/data_out 

 

 

set_max_delay  

-datapath_only 
<delay>  

-from …/enable 

-to  …/en_meta_ff 

 

Intel FPGA  

 

 

 

set_max_delay  

<delay>  

-from …|data_in 

-to  …|data_out 

 

 

set_max_delay  

<delay>  

-from …|enable 

-to  …|en_meta_ff 

 

 

 

The safest way to implement FIFO-based data synchronizers in FPGA is using built-in FIFO generators, 
such as the LogiCORE IP FIFO Generator from Xilinx.  The generated FIFO should be configured with 
independent clocks for read and write operations. For custom-built FIFOs, it is important to check that 
read and write pointers crossing clock domains are properly encoded, with only one bit changing at a 
time throughout device operation. Assertions should be used to validate one-bit-only changes of these 
pointers. 
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Reset Synchronization in FPGA 
 

In both ASIC and FPGA devices, reset signals have to be synchronized at de-assertion to prevent registers 
from going metastable with corrupted values right after reset de-assertion. In the case of multiple-clock 
devices, each clock domain should be supplied with properly synchronized reset signals. Sometimes, the 
common asynchronous reset signal is supplied to multiple-clock designs.  In such cases, this signal 
should be properly synchronized to each one of the design clocks. In other cases, reset signals could be 
designed as pre-defined configuration register bits. Same as an asynchronous reset, it must also be re-
synchronized to other clock domains. 

Reset synchronizers may synchronize either one or both reset signal edges (full or partial 
synchronization). Sequential elements with asynchronous resets may receive either fully or partially 
synchronized reset signals. Sequential elements with synchronous resets should receive fully 
synchronized reset signals only. 

The following pictures illustrate partial and full reset synchronizers (in fact, the full reset synchronizer is 
the same as a basic NDFF synchronizer):  

 

Partial reset synchronizer 
(reset de-assertion 
synchronization)  

 

Full reset synchronizer, both 
reset edges 

 

 

 

As in NDFF synchronizer implementation, reset synchronizers should be designed using “ASYNC_REG” 
(Xilinx) or “FORCED IF AYNCHRONOUS” (Intel FPGA) attributes, as well as constrained by 
“set_max_delay” timing constraints. 
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Cross-Domain Clocking Techniques for Highly-
Reliable FPGA Devices 
 

Highly reliable FPGA devices require special attention to clock domain crossings. The following design 
requirements are essential for reliance within multiple-clock devices: 

 Instantiate special metastability hardened flip-flop macros on all cross-domain boundaries. For 

example, use the “Hard_Sync” metastability hardened macro in Xilinx. These macros could be 

configured with two or more register stages. The usage of these macros significantly reduces 

the impact of metastability by reducing the metastability time and frequency of metastable 

events. 

 Constrain CDC timing paths with “set_max_delay” instead of “set_false_path”. In a case of 

special metastability hardened FF macro usage, set “set_max_delay” constraints on timing 

paths between driver flip-flop directly connected to the inputs of metastability hardened FF 

macros. 

 Never use combinational logic on clock domain crossings or between synchronizer stages.  

 Ensure that single-bit control signals do not reconverge in the receiving domain, even after one 

or more register stages. 

 In enable-based data synchronizer designs, implement sending data flip-flop arrays as 

registers-only (not BRAMS etc).  

 In enable-based data synchronizers, use “set_max_delay” to constrain timing paths between 

sending and receiving data registers. 

 Ensure data synchronizers contain receiving flip-flop arrays with built-in “enable” signals. For 

this purpose, ensure that the “direct_enable” attribute is set on the receiver flip-flops’ enable 

nets. 

 Prefer using handshake synchronizers for non-frequent data transfers. Handshake 

synchronizers ensure that data signals are stable long enough for proper capture within the 

receiving domain. 

 For frequent data transfer, prefer using FIFO-based data synchronizers, generated with vendor-

specific FIFO generation tools. For example, use the LogiCORE IP FIFO Generator to generate 

dual-port FIFO components for Xilinx devices. 

 

Advanced linting tools are capable of ensuring safe operation of complex multiple-clock designs, as 
their capabilities go far beyond the checks implemented in FPGA vendor-specific design tools.  
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Summary 
This article outlined cross domain clocking (CDC) issues and their solutions in FPGA designs. Various 
design techniques were presented, and illustrated with real-life examples for Xilinx and Intel FPGA 
devices. The CDC rules for highly-reliable FPGA designs were outlined as well. As advanced linting tools 
are capable of automatically verifying these rules, the usage of these CDC linting tools is critical to 
ensure safe operation of FPGA devices. 
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