

W H I T E P A P E R

Clock Domain Crossings in the FPGA World
Revision 1.0

2018-02-21

Alexander Gnusin

Sergei Zaychenko, PhD

[Level: Advanced]

©2018 Aldec, Inc.

Abstract

Clock domain crossing (CDC) issues cause significant
amount of failures in ASIC and FPGA devices. As FPGA
complexity and performance grows, the influence of
CDC issues on design functionality grows even more.
This paper outlines CDC issues and their solutions for
FPGA designs. Various design techniques are presented
together with real-life examples for Xilinx and Intel
FPGA devices. More importantly, this paper summarizes
the most important CDC guidelines for highly-reliable
FPGA designs.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 2

Table of Contents

Clock Domain Crossings in the FPGA World ... 1

Table of Contents .. 2

Overview ... 3

The Metastability Effect .. 3

Two Flip-Flop Synchronizer as a Common CDC Solution .. 6

Safe Synchronizer Implementation in FPGA ... 7

Half-Cycle Synchronizers in FPGA .. 9

Functional Non-Determinism of CDC Signals .. 10

Data Synchronizers ... 11

Control-Based Data Synchronizers .. 11

FIFO-Based Data Synchronizers ... 12

Data Synchronizers Implementation in FPGA ... 13

Reset Synchronization in FPGA ... 15

Cross-Domain Clocking Techniques for Highly-Reliable FPGA Devices .. 16

Summary ... 17

About Aldec, Inc. ... 17

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 3

Introduction

As the entire electronics industry continues to add more peripherals to FPGA-based systems to address
various consumer and business requirements, the metastability effects within the FPGA devices become
increasingly notorious. The metastability effects can result to non-deterministic and non-functional
errors that are impossible to catch with industry RTL simulators and static timing analysis tools. The
resulting errors are typically found in FPGA test beds or in the field which means correcting them is quite
expensive. If metastability effects can be properly mitigated earlier in the project lifecycle, then it can
minimize verification costs and increase reliability of FPGA-based systems.

The following white paper explains metastability and clock domain crossing issues in hardware designs,
outlining various design practices to make designs immune to metastability effects and functional non-
determinism introduced by clock domain crossings.

The Metastability Effect

Metastability is a phenomenon that can cause system failure in
digital devices, including FPGAs, when a signal is transferred
between circuitry of unrelated or asynchronous clock domains.
Therefore, this means it happens in systems with two or more
asynchronous clock sources. Any sequential element in a design
requires a certain period of stability for data to be properly
captured; due to the unrelated clocks, this condition cannot be
guaranteed in designs with multiple asynchronous clocks.

To better understand the metastability effect, there is a need to
examine logic gates, which are the building blocks of sequential
elements such as D flip-flops:

In fact, every flip-flop represents a negative feedback system with
two stable states, representing two binary values. Each
combinational gate contains one or many parallel or sequential N
and P CMOS transistors in open or closed states. In a stable state,
gates do not consume power other than through tiny leakages of
current, as they must always be “closed” on one side of the power
railing. However, when a value changes, there exists a certain
amount of time when both N and P transistors are partially opened,
leading to an increase in leakage current. ASIC and FPGA vendors do
their best to minimize this amount of time as well as overall leakage
power during the data change. The voltage level on gate A should
change quickly enough to minimize leakage current. In the case that

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 4

the gate voltage becomes stuck between logic values, both gates stay partially open, causing high
current flow between power rails, device heating, and possible burnout.

For proper operation, each sequential element has setup and hold timing requirements for data to be
stable around an active edge transition (data capture). When these timing requirements are violated,
the flip-flop, having negative feedback, starts bouncing at an intermediate (metastable) state. The
bouncing time may be quite long, being comparable to, or even exceeding, the clock cycle period.
Obviously, the leakage current and power dissipation grows significantly during this time. The
metastability time (Tmet) is a statistical parameter, and depends mostly on technological parameters of
the current process.

The left picture presents valid timing on the flip-flop: the input data D is stable during pre-defined
phases of the Tsetup and Thold periods around the active edge transition. The right picture presents the
metastability effect because of an input data change close to the active edge transition. Because of the
occurring metastability, the flip-flop output oscillates during Tmet, producing a non-deterministic binary
value, and experiences a high drain in current leakage.

As it is explained above, the metastability effect causes the
occurrence of intermediate logic values at a flip-flop’s output.
When the sum of metastability time and propagation delay
approaches the clock period, the intermediate logic value advances
to later flip-flop stages, spreading the effect throughout the design.
In the worst case, this may cause the “metastability avalanche
effect”. Also, combinational logic gates between the flip-flops
consume much more power while propagating intermediate logic
values.

If timing violations occur often, the influence of the metastability
effect may be critical, causing non-determinism in functional
operations and heating up certain sections to chip burnouts.

 Let’s take a closer look at metastability propagation conditions.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 5

Assuming all other inputs to the combinational logic in the receiving clkb domain are stable, we may
write the following condition for preventing metastability propagation between register stages:

Tck-Q + Tmet + Tdly < Tperiod – Tsu

Here, the formula members are:

 Tck-Q: clock-to-output flip-flop delay

 Tmet: metastability time

 Tdly: propagation delay through wires and combinational gates

 Tperiod: clock period

 Tsu: flip-flop setup time

In this formula, Tdly is the only parameter controllable by the designer.
Designers are able to minimize Tdly by removing logic gates between
flip-flops, as well as by reducing wire delay by placing A and B flip-flops
close to each other.

Glitches and hazards have an impact on the metastability effect too. The
following picture presents potentially glitchy logic in a sending clock
domain. Because the receiver may capture the signal at any time, glitches
may violate the input signal stability requirement during setup and hold
time, causing metastability effects at the receiving flip-flop. Removing all
combinational logic between driver and receiver flip-flops will eliminate
any possibility of CDC-related glitches, and this is recommended practice
for multiple-clock designs.

In addition to glitches, it is important to reduce the transition slew of the
signal crossing clock domains. During signal transition, an intermediate
value is sensed by the receiving flip-flop, and there is a higher chance for a metastable occurrence if a
signal transition takes more time than the clock transition period.

The transition period is defined by the driver strength and node capacitance:

Cnode = Cwire + ∑𝑪𝒊

where:

 Cwire: wireload capacitance

 Ci: sum of input capacitances

To reduce the transition slew effect on metastability, it is
recommended to reduce cross-domain signal capacitance
and wireload. The best design practice is to keep one-to-
one connections between driver and receiver flip-flops, without any intermediate combinational logic or
other connections (keeping fanout to be only one).

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 6

Two Flip-Flop Synchronizer as a Common CDC
Solution

The main responsibility of a synchronizer is to allow sufficient time such that any metastable output can
settle down to a stable value in the destination clock domain. The most common synchronizer used by
designers is the two-flip-flop (2-FF) synchronizer. Usually the control signals of a design are synchronized
by 2-FF synchronizers.

Let’s take a look at the timing path between the Q1 and Q2 flip-flops of
this synchronizer pair.

Assuming:

TckQ + Tmet + Tdly < Tck_period – Tsu

The signal at the Q2 flip-flop input settles down prior to being captured
by the rising edge of clkb. In this case, the Q2 flip-flop never
experiences metastability issue and always captures proper binary logic
values, passing them to other logic elements in the design. To ensure
the absence of the metastability effect on the second flip-flop (Q2) of
the synchronization pair, there is a need to make sure that each of the
synchronizer flip-flops share a direct connection only (no other connections allowed) and are placed
closer to each other.

In the case that metastability time Tmet is not small enough to fit into the above equation, there is a
need to build the synchronizer with three of even more flip-flop stages.

In summary, the recommended synchronizer pair design requirements are:

No Requirement Reason

1 Do not place any combinational logic between sending (A) and
receiving (Q1) flip-flops

Reduce transition time, avoid glitches

2 Do not connect the sending flip-flop (A) output to any other
gates

Reduce transition time

3 Keep the sending flip-flop (A) closer to the receiving one (Q1) Reduce transition time

4 Do not place any combinational logic between synchronizer flip-
flops (Q1, Q2, …)

Reduce probability of metastability
effect by reducing propagation delay
between synchronizer flip-flops

5 Do not connect synchronizer flip-flops to any other logic gates
(except from the last one)

Reduce probability of metastability
effect by reducing propagation delay
between synchronizer flip-flops

6 Keep synchronizer flip-flops closer to each other Reduce probability of metastability
effect by reducing propagation delay
between synchronizer flip-flops

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 7

Safe Synchronizer Implementation in FPGA

Just like ASICs, FPGA devices suffer from the metastability effect and its consequences. The following
guidelines must be considered when implementing cross-clock domain transitions in FPGA:

1. NDFF (2 or more flip-flop stages) synchronizers may be built from non-resettable flip-flops.

Here, we treat these flip-flops as “pipeline” registers, whether they relate to control logic or

not.

2. NDFF synchronizers, as well as sending flip-flops, should be preserved (not optimized) by

synthesis tools. In some cases, synthesis tools perform inter-register optimization, moving some

combination logic between neighboring register stages.

3. NDFF synchronizers (as well as sending flip-flops) should be implemented from flip-flop FPGA

resources only. No shift registers or BRAMs are allowed, as they do not provide direct-only flip-

flop to flip-flop connections:

4. By placing NDFF synchronizer flip-flops in the same slice, we achieve the smallest inter-flop

propagation delay, reducing the chance of metastability effects.

Xilinx uses the ASYNC_REG attribute placed on all NDFF flip-flops. This attribute:

 Automatically adds the “DONT_TOUCH” attribute on synchronizer flip-flops, preventing them from

synthesis optimization and from mappings to SRL blocks.

 Instructs placement tools to keep synchronizer flip-flops close together, preferably in one slice.

However, there is no guarantee that all synchronizers will be implemented in slices.

 Instructs the gate-level Xilinx ISIM simulator to avoid producing X’s in synchronizer flip-flops when

setup/hold violations happen. Please note that other non-Xilinx simulators miss this feature,

requiring special gate-level simulation constraints to avoid X generation in the synchronizer’s flip-

flops.

In addition to constraint timing between NDFF synchronizer flip-flops,
there is a need to constrain the timing between the driver flip-flop
and NDFF synchronizer. The “set_false_path -to Q1” command
excludes all cross-clock domain timing paths from synthesis

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 8

optimization and timing analysis. However, long timing paths to the synchronizer input impacts
transition time as well, causing metastability effects to happen more often. It is preferable to reduce
these timing paths using the “set_max_delay -datapath_only” command. The “-datapath_only” option
removes the clock skew from slack computation, as clock skew is not applicable for constraining signals
between asynchronous clock domains.

The following code example shows the Xilinx-specific NDFF synchronizer implementation for a 1-bit
control signal:

Intel FPGA uses the Intel-specific “SYNCHRONIZER_IDENTIFICATION”
attribute with the “FORCED IF AYNCHRONOUS” value. This attribute
should be placed on the first NDFF flip-flop only. The attribute
prevents synthesis optimization of first NDFF flip-flop as well as
provides metastability optimization during placement, trying to
place the NDFF flip-flops closer to each other. However, there is still
a need to set the “preserve” attribute on the second NDFF flip-flop.
As was the case with Xilinx, constraining timing paths to the NDFF input is a recommended practice.

Please note that Intel FPGA does not provide any means to eliminate X’s generated in NDFF
synchronizers during gate-level simulation.

Some designs contain cross domain clocking paths from input design
ports. It is not recommended for CDC paths to cross design
boundaries. The only exception could be the designs with NDFF
synchronizers organized in separate entities/modules. In the case that
a NDFF synchronizer connects directly to the input port, there is a
need to constrain the timing path from the input port to the NDFF
using the “set_max_delay” command. However, the external-to-
module part of the timing paths may not be controllable, causing
potential CDC issues. For IP developers, it is highly recommended to hide all CDC transitions within IP
designs, preventing any CDC issues during IP integration in customer designs.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 9

Half-Cycle Synchronizers in FPGA

In half-cycle synchronizers, the second flip-flop captures data using
an inverted clock edge:

The purpose of inverting the clock at the second synchronizing flip-
flop is to save a half clock cycle delay during the propagation delay
of CDC signals. Sometimes, these synchronizers are implemented
on timing-critical paths of ASIC designs, where propagation delay
savings within CDC paths are critical for correct design functionality. This approach, however, adds
significant constraints on metastability time: now, metastability time plus added propagation delay must
fit into the half period of the receiving clock:

In addition, the clock inversion introduces extra clock uncertainty,
constraining the metastability time even more.

Half-cycle synchronizer should be avoided in FPGA designs
because of the following reasons:

 In FPGA, clock inversion cannot be done using a local

inverter gate so close to the second flip-flop. Inversion

must be done through centralized FPGA clocking resources, for example, through the MMCM

clock management component in Xilinx. Because of this, extra clock tree resources are required

for the inverted clock. The mismatches between “direct” and inverted clock tree delays are

more than the delay though the local clock inverter. So, the increasing clock uncertainty

constrains the length of metastability time even more.

 In FPGA, registers belonging to different clock domains

reside in different FPGA slices:

Because of this, the interconnect path between synchronizer
registers are not optimal from a CDC perspective.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 10

Functional Non-Determinism of CDC Signals

From a functional perspective, clock domain crossings introduce non-
determinism into design functionality due to unpredictable NDFF delays
for signals crossing clock domains:

For a single control signal, this may not be an issue as 1-cycle delay
unpredictability is not important for passing signals to the new clock
domain.

The issue of unpredictable delay becomes critical when related signals
(either control or data) cross clock domains through NDFF synchronizers.
Therefore, it is dangerous to pass functionally related bit signals through
NDFF synchronizer arrays because of potential data corruption at the
receiving side.

The following example demonstrates vector corruption at a clock domain
crossing through a NDFF synchronizer array:

Due to delay variations, the Din[1] bit arrives later than the rest of Din bits,
causing Din vector corruption at the receiving side.

In the above example, both bits Din[0] and Din[1] change simultaneously,
with the Din[1] bit experiencing more delay than bit D[0]. There should be
no corruption if only one bit in the Din vector changes at a time. In this
case, the receiving side vector either changes to a new value or, in the
case of extra cycle delays, stays at the previous value. Gray coding ensures
only a 1-bit change, if it is applied on incremental counters with a counter
limit of power two.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 11

Data Synchronizers

There are two basic methods for transferring data signals across clock domain boundaries. The first is
based on enable-controlled data capture in the receiving domain. The second is based on sequential
writing and reading of data using a dual-port FIFO.

Control-Based Data Synchronizers

There are different types of synchronizers using enable-controlled data capture. In each type, however,
the enable signal is responsible to inform the receiving domain that
data is stable and ready to be captured:

The transmitter is responsible for keeping data stable over a time
when the data enable signal, propagated to the receiving domain,
stays asserted. The stability of all data bits during receiver data
capture guarantees an absence of the metastability effect as well as
correct data capture.

The following table summarizes the most commonly used control-based data synchronizer types:

Name Schematics Waveform / State diagram Description

Mux-Based Data
Synchronizer

Sender domain is responsible
to keep Di data stable when
captured by the receiving
domain (when En’ signal is
asserted)

Enable-Based
Data
Synchronizer

Similar to the mux-based
synchronizer, but based on
flip-flops with built-in enable
signals

Handshake-
Based Data
Synchronizer

The task of the TX/RX FSM
pair is to ensure two-side
communication between
sender and receiver to
guarantee Di signal stability
while the En signal is asserted

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 12

To achieve safe data capture, the control-based data synchronizers
should make sender data stable not only during the period of the
enable signal assertion, but slightly wider, considering certain data
setup and hold times relative to the data’s stability region. This is
important to eliminate possible data glitches during data capture. The
handshake-based data synchronizer automatically implements these data stability margins during the
cross-domain handshake communication.

FIFO-Based Data Synchronizers

Limited bandwidth is one of the main drawbacks of
control-based data synchronizers. Each data transfer
takes time, since each data transfer comes along with
control signal intercommunication. FIFO-based data
synchronizers allow fast data communication through
clock domain boundaries. In FIFO-based data
synchronizers, data is pushed into the FIFO with the
transmitter clock and pulled out from the FIFO with
the receiver clock. The FIFO_FULL control signal
controls the driver write frequency, while the FIFO_EMPTY signal controls the receiver read frequency.

In asynchronous FIFO designs, the Gray-coded read and write pointers are passed into alternate clock
domains through NDFF synchronizers to generate full and empty status flags. It is important to make
sure that prior to coding, a counter runs from 0 to the power-of-two boundary, as only in this case can
we achieve a one-bit-change of the coded counter signal during counter wrap-up.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 13

Data Synchronizers Implementation in FPGA

One of the more well-known FPGA issues is the use of multiplexors in the output
decoders of lookup tables:

These multiplexors may produce glitches during certain combinations of input
values. The basic multiplexor is built from AND and OR gates, with an inverted “sel”
value supplied to the upper AND gate. When both multiplexor inputs stay “high”
and that select signal changes from high to low, the glitch appears on the
multiplexor’s output, as shown in the following picture:

So, even though both multiplexer inputs remain stable and only the mux select signal changes, the
multiplexor may experience glitches on its output. This glitch may be captured at the receiving clock
domain, causing metastability and data value corruption. As multiplexors are used to implement a
lookup table’s output decoder, any combinational logic in FPGA may produce glitches.

In timing-critical high-speed FPGA designs, it is important to avoid any combinational logic located at
either control or data clock domain crossings. For this reason, mux-based data synchronizers should be
avoided. The preferred data synchronizer in FPGA should be built on receiving flip-flops with built-in
enable signals. Both Xilinx and Intel FPGA development tools support the “direct_enable” attribute set
on these flip-flops. This attribute implements flip-flops with a built-in enable input. During the data
synchronizer’s implementation in FPGA, it is important to mark the wire controlling the flip-flop capture
array with the “direct_enable” attribute. Also, it is important to place data sending and data receiving
flip-flop arrays close to each other in order to reduce cross-domain propagation delay as well as signal
transition time. The “set_max_delay” constraint should be set on the data synchronizer’s timing paths.

For non-timing-critical FPGA designs, designers may use (with special
care) combinational logic on clock domains crossings. For example,
BRAMs may be used instead of driving a flip-flop array, being
connected directly to receiving flip-flops from another clock domain:

To avoid glitches during data transfer, the outputs of BRAM should
remain stable during En’ signal assertion, as well as adding sufficient
setup and hold margins.

The following code examples illustrates data synchronizers’ implementations for Xilinx and Intel FPGA
devices, along with timing constraints:

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 14

FPGA Vendor Code Constraints

Xilinx

set_max_delay

-datapath_only
<delay>

-from …/data_in

-to …/data_out

set_max_delay

-datapath_only
<delay>

-from …/enable

-to …/en_meta_ff

Intel FPGA

set_max_delay

<delay>

-from …|data_in

-to …|data_out

set_max_delay

<delay>

-from …|enable

-to …|en_meta_ff

The safest way to implement FIFO-based data synchronizers in FPGA is using built-in FIFO generators,
such as the LogiCORE IP FIFO Generator from Xilinx. The generated FIFO should be configured with
independent clocks for read and write operations. For custom-built FIFOs, it is important to check that
read and write pointers crossing clock domains are properly encoded, with only one bit changing at a
time throughout device operation. Assertions should be used to validate one-bit-only changes of these
pointers.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 15

Reset Synchronization in FPGA

In both ASIC and FPGA devices, reset signals have to be synchronized at de-assertion to prevent registers
from going metastable with corrupted values right after reset de-assertion. In the case of multiple-clock
devices, each clock domain should be supplied with properly synchronized reset signals. Sometimes, the
common asynchronous reset signal is supplied to multiple-clock designs. In such cases, this signal
should be properly synchronized to each one of the design clocks. In other cases, reset signals could be
designed as pre-defined configuration register bits. Same as an asynchronous reset, it must also be re-
synchronized to other clock domains.

Reset synchronizers may synchronize either one or both reset signal edges (full or partial
synchronization). Sequential elements with asynchronous resets may receive either fully or partially
synchronized reset signals. Sequential elements with synchronous resets should receive fully
synchronized reset signals only.

The following pictures illustrate partial and full reset synchronizers (in fact, the full reset synchronizer is
the same as a basic NDFF synchronizer):

Partial reset synchronizer
(reset de-assertion
synchronization)

Full reset synchronizer, both
reset edges

As in NDFF synchronizer implementation, reset synchronizers should be designed using “ASYNC_REG”
(Xilinx) or “FORCED IF AYNCHRONOUS” (Intel FPGA) attributes, as well as constrained by
“set_max_delay” timing constraints.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 16

Cross-Domain Clocking Techniques for Highly-
Reliable FPGA Devices

Highly reliable FPGA devices require special attention to clock domain crossings. The following design
requirements are essential for reliance within multiple-clock devices:

 Instantiate special metastability hardened flip-flop macros on all cross-domain boundaries. For

example, use the “Hard_Sync” metastability hardened macro in Xilinx. These macros could be

configured with two or more register stages. The usage of these macros significantly reduces

the impact of metastability by reducing the metastability time and frequency of metastable

events.

 Constrain CDC timing paths with “set_max_delay” instead of “set_false_path”. In a case of

special metastability hardened FF macro usage, set “set_max_delay” constraints on timing

paths between driver flip-flop directly connected to the inputs of metastability hardened FF

macros.

 Never use combinational logic on clock domain crossings or between synchronizer stages.

 Ensure that single-bit control signals do not reconverge in the receiving domain, even after one

or more register stages.

 In enable-based data synchronizer designs, implement sending data flip-flop arrays as

registers-only (not BRAMS etc).

 In enable-based data synchronizers, use “set_max_delay” to constrain timing paths between

sending and receiving data registers.

 Ensure data synchronizers contain receiving flip-flop arrays with built-in “enable” signals. For

this purpose, ensure that the “direct_enable” attribute is set on the receiver flip-flops’ enable

nets.

 Prefer using handshake synchronizers for non-frequent data transfers. Handshake

synchronizers ensure that data signals are stable long enough for proper capture within the

receiving domain.

 For frequent data transfer, prefer using FIFO-based data synchronizers, generated with vendor-

specific FIFO generation tools. For example, use the LogiCORE IP FIFO Generator to generate

dual-port FIFO components for Xilinx devices.

Advanced linting tools are capable of ensuring safe operation of complex multiple-clock designs, as
their capabilities go far beyond the checks implemented in FPGA vendor-specific design tools.

Aldec White Paper Clock Domain Crossings in the FPGA World

Rev. 1.0
www.aldec.com Page 17

Summary
This article outlined cross domain clocking (CDC) issues and their solutions in FPGA designs. Various
design techniques were presented, and illustrated with real-life examples for Xilinx and Intel FPGA
devices. The CDC rules for highly-reliable FPGA designs were outlined as well. As advanced linting tools
are capable of automatically verifying these rules, the usage of these CDC linting tools is critical to
ensure safe operation of FPGA devices.

About Aldec, Inc.

Aldec Inc., an industry leader in Electronic Design Verification, provides a patented verification
technology tool suite including: RTL Design, RTL Simulation, Hardware-Assisted Verification, SoC/ASIC
Emulation & Prototyping, Design Rule Checking, CDC Verification, IP Cores, Requirements Lifecycle
Management, DO-254 Functional Verification, Embedded Solutions, High-Performance Computing and
Military/Aerospace solutions. www.aldec.com

http://www.aldec.com/

