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Abstract 

This white paper explains Reset-related ASIC and FPGA 
design issues as well as outlines commonly-used design 
techniques leading to safe reset implementations. It 
goes on to explain about Reset Domain Crossing effects 
and methods to mitigate their influence on design. LINT 
tools provide valuable help for designers in Resets and 
Reset Domain Crossings verification. 
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Resets Implementation in ASIC and FPGA designs 

In ASIC or FPGA devices, a reset acts as a synchronization signal that sets all the storage elements to a 
known state. Designers normally implement a global reset as an external pin to initialize the design on 
power-up as well as re-initialize it later as needed. For example, the reset may be initiated by: 

 Press switch: initiated by user request 

 Power-on-Reset: initiated by power supply, signaling the “power ready” condition.  

 Microprocessor, signaling system re-initialization caused by excessive interconnect noise 
 
The power-on-reset (PoR) or press switch circuitry may use a Schmitt trigger to de-assert the reset signal 
cleanly once the rising voltage of the RC network passes the threshold voltage of the Schmitt trigger. 
The software-based reset techniques may use input ports or software interface to initiate the reset 
action. 
 
Bringing a design into a known state ensures functional repeatability of the digital design. As a 
predictable synchronous automation, the system should operate exactly the same after the reset 
operation is followed by similar sequence of input stimulus.  
 
The commonly-used convention is the differentiation between the Hard and Soft resets. Hard resets are 
initiated by other hardware components (power supply or press switch), while Soft resets are initiated 
by software-driven requests such as entering power-saving mode or re-
booting the system due to a non-recoverable error event. 
 
Normally, Hard resets are asserted and de-asserted asynchronously, while 
Soft resets may use synchronous operations. Also, Hard resets will affect the 
whole device, while Soft resets may reset only a portion of design while 
leaving the rest of design circuitry undisturbed: 
 
Asynchronous reset operation may be a big issue for predictable and 
repeatable design initialization. In synchronous designs, asynchronous reset 
de-assertion causes metastability issues as well as unpredictable initialization 
values of memory elements. Reset signal de-assertions may be delivered to 
design storage elements in different clock cycles or during the setup/hold 
storage element region, and there is no predictability of the design. The 
following picture provides an example of an unpredictably-initialized design:  
In this example, the reset signal de-asserts during the active clock edge 
change, causing metastability issues as well as randomly initialized register 
values.  
 
To avoid non-determinism in designs, reset signals should be always synchronized at de-assertion and 
design storage elements should receive reset de-assertion. Usually, this synchronization is implemented 
within the design. 
 

Synchronous and Asynchronous Resets 

There exist two basic Reset implementations: Synchronous and Asynchronous. These implementations 
describe internal-to-device reset, connecting directly to storage elements reset pins. Despite their 
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names, both resets are synchronous to the design clock in reset de-assertion. The only difference is 
reset assertion edge synchronization type, which is clock-synchronous in synchronous resets and clock-
asynchronous in asynchronous resets.  

 

Reset type selection is one of the main implementation considerations in digital logic. Both 
Asynchronous and Synchronous resets have their own advantages and drawbacks, which are discussed 
later in the paper. 

 

Asynchronous Resets 

Asynchronous resets are asynchronous only for the reset assertion. Reset de-assertion is still 
synchronous to internal design clock and the reset tree has to be taken into account during timing 
analysis. The following code demonstrates asynchronous reset implementation:  

 

As seen in the example, sequential processes contain reset in the sensitivity list. The reset condition is 
implemented at the top of the process, so reset-driven data change precedes  clock-driven data change. 
This condition matches the implementation of an asynchronous reset in storage elements, by 
implementing the same preference functionality. 

The advantages of asynchronous resets include: 

 Resets are being implemented separately from the datapath, leaving datapath logic intact. This 
feature leads to better timing closure and smaller gate count, which reduces area and power. 

 Resets may operate with or without clock and have preference over clock-driven storage 
element data changes. This enables reset operation with or without clocking, allowing designers 
to reset designs with non-locked clock generators. 

 In FPGA, asynchronous reset nets could be mapped to global nets, allowing high-fanout 
connection of reset signal to thousands of storage elements as well as timing closure on reset 
de-assertion. 

The disadvantages of asynchronous resets include: 

 Although named “asynchronous”, the reset signal still requires synchronization and timing 
closure for the reset tree. The reset tree must be properly balanced to supply reset de-assertion 
on the same clock cycle. This may be problematic for the high-speed designs. 

 Asynchronous resets may require a reset glitch filter. Reset pulses wide enough to meet the 
minimum reset pulse width for a flip-flop will cause the flip-flop to reset. So, an asynchronous 
reset glitch may reset the design and the reset glitch filter may be required to filter 
asynchronous reset pulses less than pre-defined length. 
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 Asynchronous resets introduce asynchronous events into the design. In the case of partial 
asynchronous reset, these asynchronous events may influence on operating logic, introducing 
metastability issues and non-determinism into the design functional operation. 
 

Synchronous Resets 

Synchronous resets are the other commonly-used reset implementation type. Here, both reset assertion 
and reset de-assertion edges are synchronous. The following example represents synchronous reset 
implementation:  

 

 
 

In most cases, storage elements such as Flip-Flops do not implement special synchronous reset input. 
Also, reset has the same priority as incoming data relative to the clock active edge. It is important to 
note that synchronous reset is unable to operate without clock or during a PLL clock training period. 
Synchronous resets are treated like any other clock-synchronous data signals, and timing analysis has to 
be performed on synchronous reset like any other design signals.  

The advantages of synchronous resets include: 

 Synchronous resets enable development of completely synchronous devices. Avoidance of 
asynchronous events leads to higher design reliability, which is required in mission-critical 
devices. 

 Generally, storage elements without asynchronous reset will have a smaller area. In some cases, 
synchronous reset implementation leads to power and area savings. 

 In FPGA, the no-reset flip-flop could be implemented in BRAM or SRL, allowing better device 
utilization. 

The disadvantages of synchronous resets include: 

 Synchronous resets add extra logic to the datapath between flip-flops. This may impact timing 
and could be undesirable in high-speed designs. 

 For multiple-clock designs, synchronous resets have to be re-synchronized for each clock 
domain. Also, since each clock domain has its own minimum pulse width requirements, each 
clock domain requires a reset pulse stretcher. 

 Synchronous resets require a clock edge for reset operation. Without the clock, synchronous 
resets are unable to operate. This may be an issue for designs with clock gating, as it is 
impossible to reset the design with an already gated clock. 

The Power-on-Reset in FPGA designs 

 



Aldec White Paper Resets and Reset Domain Crossings in ASIC and FPGA designs 

Rev. 1.0 
www.aldec.com Page 6  

Unlike ASICs, FPGA devices implement the Power-on-Reset function. It initiates the program load or 
configuration. Initialization values from INIT statements are loaded to into the bitstream.  In addition to 
configuring the LUT's and routing, the bitstream contains initial values for every flip-flop and RAM bit in 
the device. Since this is a serial process, registers are initialized at different times throughout the 
configuration process, however the logic is not active yet so it is unimportant. The Global Set/Reset 
(GSR) signal keeps the device in non-operational mode until the end of the configuration phase. After a 
pre-defined number of clock cycles, and the completion of the configuration phase, the GSR signal goes 
inactive and the FPGA is allowed to run as programmed.  

 

The GSR signal gates all functional clocks, so GSR signal de-assertion is safe from a metastability 
standpoint. However, it may introduce non-determinism in the design, because there is large skew in 
the GSR net to various parts of the FPGA. This skew may be greater than one or more functional clock 
cycles, causing reset de-assertion at different clock cycles. This behavior initializes design logic with 
sequential loopback in the wrong state. 

 

Unlike ASICs, FPGA developers may use 
VHDL/Verilog initialization constructs to 
define register values after the GSR release. 
In case initialization values are not defined, 
the default value (usually, low value) will be 
used for initialization. The following code 
examples demonstrate setting default 
values for “data” in a flip-flop in both 
Verilog and VHDL: 

 

FPGA vendors encourage customers to use non-resettable Flip-Flops due to better device utilization. The 
first reason is to save on reset connections, and the second one is the ability to implement non-
resettable flip-flops within Shift Register LUTs (SRL) as well as in Block RAMs (BRAM). In RTL simulation, 
however, a non-initialized flip-flop will hold an undefined “X” value. These “X” values should not affect 
the predictability and determinism of the device operation. The RTL simulation, however, is “X-
optimistic”, converting X’s to known values. In this case, possible issues may remain hidden. It is good 
practice to completely eliminate X values from digital simulation by using initialization constructs or by 
resetting all design storage elements to known values. 

 

Reset Synchronization Techniques 

In most cases, external-to-device reset signals are fully asynchronous. Synchronization techniques are 
required to convert an external-to-device reset to the internal-to-device one, either asynchronous-by-
assertion or fully synchronous. 

 



Aldec White Paper Resets and Reset Domain Crossings in ASIC and FPGA designs 

Rev. 1.0 
www.aldec.com Page 7  

Asynchronous Reset Synchronization Techniques 

The internal-to-design asynchronous reset still requires synchronization for reset de-assertion. The 
following synchronization design patterns perform this synchronization:  

 

 

 

As we can see, the above synchronizers ensure 
the minimum width of the reset pulse to be at 
least two clock cycles. This may not be sufficient 
to reset designs with non-resettable flip-flops in 
pipelines. The following code snippet presents an 
example of a pulse synchronizer with a minimum 
pulse assertion width of 10 clock cycles: 

 

In both ASIC and FPGA designs, it is important to guarantee that a reset is de-asserted only when design 
clocks are stable and running.  In this case, PLL/DLL or FPGA MMCM “Locked” signals postpone reset de-
assertion in reset synchronizers until the end of clock training: 

  

 

Synchronous Reset Synchronization Techniques 

Synchronous resets can be easily created from asynchronous using a well-known NDFF synchronizer:  
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The same synchronization technique may be used to re-synchronize reset signals from one clock domain 
to another one. Please note that each clock domain logic has their own minimum reset pulse width 
requirements. A pulse stretcher could be implemented prior to reset synchronizer to ensure required 
pulse width, as shown in the following code example: 

   

In FPGA, the NDFF reset synchronization Flip-Flops may be non-resettable 
by themselves. In order to avoid possible reset glitches, set the initial values 
for these Flip-flops similar to the initial value for the external asynchronous 
reset signal. The following FPGA-specific reset synchronizer example 
assumes that immediately after device configuration, the external 
asynchronous reset stays at logical “0”, setting the initial reset synchronizer 
values accordingly:  

Xilinx uses a special “ASYNC_REG” placement constraint to place the NDFF 
synchronizers close to each other. Synchronous reset synchronizers require the usage of this constraint 
in CDC as well. 

Similar to asynchronous reset implementation, the synchronous reset operation may be postponed until 
the end of clock training process. This guarantees the quality of the clock signal required for proper 
synchronous reset operation. Unlike asynchronous resets, synchronous resets cannot be asserted prior 
to or during clock training process: both reset assertion and de-assertion require proper design clocking. 
In this case, external asynchronous resets should not toggle until design clocks are completely locked. 
One solution is to route the “Locked” notification signal to the design port and implement external-to-
device logic, ensuring that reset is supplied only after the “Locked” signal is asserted. The other possible 
solution may be to use the “Locked” signal change as a trigger for a synchronous reset, as shown in the 
following code snippet: 

 

 

 

Reset Synchronizers for Multiple-Clock Designs 
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Multiple-clock designs require correct reset synchronization for each 
clock domain. Resets for each clock domain should be properly 
synchronized; if needed, reset pulse stretchers can be implemented. In 
order to enable simultaneous asynchronous reset assertion for all clock 
domains, asynchronous resets have to be synchronized from the 
common source port, as shown in the picture. Here, pulse synchronizers 
provide the minimum reset length of two clka clock periods to the “clka” 
domain and the minimum reset length of three clkb clock periods to the 
“clkb” domain.  

 

Synchronous resets, unlike asynchronous ones, may be re-synchronized 
from one clock domain to another one. Unlike asynchronous resets,  
synchronous resets do not use global nets, so this approach may be more 
convenient for placement & routing. A pulse stretcher may be used to 
accommodate for all clock domain frequencies and requirements. The 
following picture presents synchronous reset re-synchronization 
technique:  

 

In the above example, the sync_rsta pulse needs to be stretched in the case a clock period in clkb 
domain is bigger than a clock period in clka domain. 

 

Reset Techniques for Designs with Non-Resettable Storage Elements 

Non-resettable storage elements may exist in either ASIC or FPGA designs. In ASIC designs, the non-
resettable storage elements may initialize with non-deterministic high or low binary value. In FPGA 
designs, the non-resettable storage elements initialize to deterministic (usually, low) values or to the 
user-defined initial value (provided by HDL language initialization statements such as “initial” Verilog 
construct).  

 

Nowadays, FPGA vendors encourage designers to use non-resettable flip-flops, as FPGA resources 
contain structures for non-resettable flip-flops mappings only. These structures include Shift Register 
LUTs (SRL) and distributed Block RAMs (BRAM). However, non-resettable storage elements may 
introduce non-determinism to the FPGA design, as the Global Set-Reset net (GSR net) may release 
different storage elements in different clock cycles. So, some storage elements may “wake up” one or 
more clock cycles earlier than the others. In the presence of sequential loopback, this behavior could 
corrupt initialization values and launch the design from an un-predictable state. 

One of the important arguments towards non-resettable flip-flop usage is 
synthesis optimizations based on register retiming, pipelining and some other 
register-related netlist modifications. These optimization techniques are widely 
used in Stratix 10 devices. Register-specific optimizations are possible only in the 
absence of an asynchronous reset. The following picture presents a register re-
timing example, where, to optimize critical timing paths an AND gate is pushed on 
the other side of register: 
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Usually, the design control logic relies on previous states to contain sequential loopbacks. Finite state 
machines, counters, protocols etc. require strict determinism in their operation. The datapath structures 
may rely on the previous states too. For example, convergence-based algorithms such as an Infinite 
Impulse Response (IIR) filters rely on the previous data processing cycles results. Similarly, many 
arithmetic operations such as division rely on the previous iteration’s results.  

Proper device initialization should completely eliminate non-deterministic behaviors, so designs with 
non-resettable elements need to be treated with special care. The following design practices are 
essential to completely eliminate non-determinism from designs with non-resettable storage elements: 

 For control logic implementation, use resettable storage elements only. 

 For datapath logic with sequential feedbacks, use resettable storage elements only. LINT tools 
may help designers to identify logic with sequential feedback. 

 Pipelines, either in control logic or in the datapath, may still contain non-resettable flip-flops. 
Special treatment is required to guarantee fully deterministic behavior while resetting pipelines. 

The main reason to use pipelines in ASIC design is to minimize design area and improve timing. In FPGA, 
the pipelines may be mapped to SRL or BRAM structures, improving device utilization and timing. Special 
reset-specific logic is required to guarantee proper pipeline reset operation. To propagate reset values 
through the pipeline, the first pipeline flip-flop should remain 
resettable. The pipeline output should keep the proper reset value 
throughout the pipeline reset process. Finally, the reset pulse 
length should be sufficiently wide to ensure all pipeline stages 
receive the correct reset values. The following picture illustrates 
an example of a proper resettable pipeline design:  

In simulation, the pipeline reset failure leads to unknown values in the pipeline output. RTL simulation is 
known to be “X-optimistic”, so these values may remain undiscovered and 
may not lead to the test failure. The following picture presents the “X-
optimism” RTL code simulation issue, where the X-value “disappears” once 
passing to the argument of “if” process: 

 

The “X-checkers” design assertions help designers to ensure an absence of X-values on pipeline outputs. 
LINT tools help designers identify design pipelines and automatically generate design assertions to 
connect them to pipeline outputs. 

Reset Domain Crossings 

Reset Domain Crossing appears in designs receiving multiple reset signals that target different design 
structures. These signals introduce asynchronous reset assertion events in each reset domain. These 
asynchronous reset events may lead to metastability defects as well as unpredictable design 
initialization. The following picture illustrates a Reset Domain Crossing issue:  
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The asynchronous reset assertion of the “rst2” signal causes an immediate data change in the first flip-
flop. If second flip-flop is still in operational mode, the asynchronous data change at “b” causes a setup 
or hold violation during the second flip-flop data capture. These violations may cause the second flip-
flop to go to a metastable state and non-deterministic at data capture. 

The frequency of the reset operation increases the influence of the Reset Domain Crossing effect. It is 
common practice to dynamically reset temporary non-functional blocks in low-power designs for power 
optimization purposes. Such a design should be developed considering the Reset Domain Crossing 
effects. 

Reset Domain Crossing influences only where the reset 
domains cross, sending domain reset assertions 
asynchronously while the receiving domain reset remains 
un-asserted. The best design practice to avoid Reset 
domain crossing issues is to supply resets in the correct 
order, as shown in the following picture:   

Here, the design has three asynchronous reset domains. The arrows represent Reset Domain Crossing 
directions. As we see, there are no Reset Domain Crossing issues on rst1->rst2 crossings, as rst2 is 
asserted after the rst1 signal. Similarly, there is no issues on rst3->rst1 and rst2->rst3 crossings.  The 
rst3->rst2 crossing has to be considered as a real issue; the design has to be resilient to the metastability 
and non-determinism issues created by the Reset Domain Crossing. 

A proper reset ordering sequence may minimize the RDC (Reset Domain Crossing) influence on a designs 
behavior. LINT tools help designers determine the content of reset domains as well as the crossings 
between them. RDC crossings with proper reset sequences can be excluded from consideration. Note 
that it is designer’s task to properly implement reset sequences. LINT tools are able to automatically 
generate design assertions to confirm the proper reset sequences are given in the design. 

One of the best RDC synchronization methods is to isolate the receiving domain register from the source 
domain register. This requires an enable signal to be generated in the receiving register’s clock and reset 
domains, isolating the receiving register from the transmitting register when the reset is asserted. The 
following picture presents the isolation cell implementation used in Low-Power designs: 

 

In the above example, the iso_en signal must be asserted prior to the assertion of rst1. The receiving 
flip-flop holds its value during an asynchronously sent flip-flop data change. LINT tools help customers 
identify isolation cells in Reset Domain Crossings as well as to generate verification code to ensure 
correct operation of “isolation-enable” signals relative to reset signal assertions. 

Another technique solves the metastability-related issues, caused by 
Reset Domain Crossings. The well-known Clock Domain Crossing 
technique to beat metastability is using an NDFF synchronizer. The 
same technique is used to remove the metastability effect influence 
on Reset Domain Crossings, as it is shown in the following picture:  
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Please note that that, unlike the isolation cell, this scheme cannot prevent the non-determinism in a 
design because of one-clock reset shifts between reset domains. Here, 
LINT tools may verify the re-convergence of signals crossing reset 
domains, as shown on the following picture:   

In the case no re-convergence is detected, reset domain signals crossed 
through the synchronizers may be safe. 

Also, please note that Reset Domains may not necessarily match the boundaries of Clock Domains. 
There may be two or more independent to-each-other Reset Domains belonging to the same Clock 
Domain.  
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